Cargando…

Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kristensen, Terje
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sharjah : Bentham Science Publishers, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBSCO_ocn961455685
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 161112s2016 xx ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDB  |d OCLCF  |d OCLCO  |d N$T  |d YDX  |d AGLDB  |d MERUC  |d OCLCQ  |d D6H  |d VTS  |d EZ9  |d OCLCQ  |d LVT  |d STF  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961813761  |a 1010958552  |a 1087399041 
020 |a 9781681082998  |q (electronic bk.) 
020 |a 1681082993  |q (electronic bk.) 
020 |z 9781681082301 
029 1 |a AU@  |b 000067961294 
029 1 |a DEBSZ  |b 493178554 
035 |a (OCoLC)961455685  |z (OCoLC)961813761  |z (OCoLC)1010958552  |z (OCoLC)1087399041 
050 4 |a Q342  |b .K757 2016eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Kristensen, Terje. 
245 1 0 |a Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms. 
260 |a Sharjah :  |b Bentham Science Publishers,  |c 2016. 
300 |a 1 online resource (135 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a PREFACE ; ACKNOWLEDGEMENTS; CONFILICT OF INTEREST; Introduction ; 1.1. OVERVIEW; 1.2. GOAL; 1.3. OUTLINE; Chapter 1 (Introduction); Chapter 2 (Background); Chapter 3 (Evolutionary Algorithms); Chapter 4 (System Specification); Chapter 5 (Design and Implementation); Chapter 6 (Data Visualization); Chapter 7 (User Interface); Chapter 8 (Case Study); Chapter 9 (Discussion); Chapter 10 (Summary and Future); Background ; 2.1. CLUSTERING; 2.1.1. Introduction; 2.1.2. General Definition; 2.1.3. Object Similarity; Proximity Measure for Continuous Values; Proximity Measure for Discrete Values. 
505 8 |a Proximity Measure for Mixed Values2.1.4. Clustering Methods; Hierarchical Clustering; Partitional Clustering; Fuzzy Clustering; 2.1.5. Cluster Membership; 2.1.6. Cluster Validation; Evolutionary Algorithms ; 3.1. INTRODUCTION; 3.1.1. Data Representation Chromosome; 3.1.2. Initial Population; 3.1.3. Fitness Function; 3.1.4. Selection; 3.1.5. Reproduction; 3.1.6. Stopping conditions; 3.2. MATHEMATICAL OPTIMIZATION; 3.2.1. Maxima and Mimima; 3.2.2. Optimization Problems; 3.3. GENETIC ALGORITHMS; 3.3.1. Crossover; 3.3.2. Mutation; 3.3.3. Control Parameters; 3.4. GENETIC PROGRAMMING. 
505 8 |a 3.4.1. Tree Based Representation3.4.2. Fitness Function; 3.4.3. Crossover Operators; 3.4.4. Mutation Operators; 3.5. EVOLUTIONARY PROGRAMMING; 3.5.1. Representation; 3.5.2. Mutation Operators; 3.5.3. Selection Operators; 3.6. EVOLUTION STRATEGIES; 3.6.1. Generic Evolution Strategies Algorithm; 3.6.2. Strategy Parameter; 3.6.3. Selection Operator; 3.6.4. Crossover Operators; 3.6.5. Mutation Operator; 3.7. DIFFERENTIAL EVOLUTION; 3.7.1. Mutation Operator; 3.7.2. Crossover Operator; 3.7.3. Selection; 3.7.4. Control Parameters; 3.8. CULTURAL ALGORITHMS; 3.8.1. Belief Space. 
505 8 |a 3.8.2. Acceptance Function3.8.3. Influence Function; System Specification ; 4.1. INTRODUCTION; 4.2. SYSTEM OBJECTIVE; 4.3. FUNCTIONAL REQUIREMENTS; 4.3.1. System Input; 4.3.2. Cluster Analysis; 4.3.3. Visualization; 4.4. NON-FUNCTIONAL REQUIREMENTS; 4.4.1. Functional Correctness; 4.4.2. Extensibility; 4.4.3. Maintainability; 4.4.4. Portability; 4.4.1. Usability; Design and Implementation ; 5.1. INTRODUCTION; 5.2. SYSTEM ARCHITECTURE; 5.2.1. Dependency Injection; 5.2.2. Open-Closed Principle; 5.3. TOOLS AND TECHNOLOGIES; 5.3.1. Java; 5.3.2. JavaFX; 5.3.3. Netbeans; 5.3.4. Maven. 
505 8 |a 5.3.5. Git and GitHub5.3.6. JUnit; 5.4. DATA STRUCTURE AND CLUSTERING; 5.4.1. Import Data and Data Structure; 5.4.2. K-means Algorithm; Complexity of K-Means Operations; 5.5. EVOLUTIONARY ALGORITHMS; 5.5.1. Genetic Clustering Algorithm; Population Initialization; Fitness Evaluation; Evolve Population; Termination Criteria; Time-Complexity; 5.5.2. Differential Evolution Based Clustering Algorithm; Population Initialization; Mutation; Crossover; Termination Criteria; Time-complexity; 5.5.3. Selection Operators; Random Selection; Proportional Selection; 5.5.4. Mutation Operators. 
500 |a Floating-Point Mutation. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computational intelligence. 
650 6 |a Intelligence informatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computational intelligence  |2 fast 
776 0 8 |i Print version:  |a Kristensen, Terje.  |t Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms.  |d Sharjah : Bentham Science Publishers, ©2016  |z 9781681082301 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511878  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4727875 
938 |a EBSCOhost  |b EBSC  |n 1511878 
938 |a YBP Library Services  |b YANK  |n 13237571 
994 |a 92  |b IZTAP