|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBSCO_ocn961455685 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
161112s2016 xx ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d IDB
|d OCLCF
|d OCLCO
|d N$T
|d YDX
|d AGLDB
|d MERUC
|d OCLCQ
|d D6H
|d VTS
|d EZ9
|d OCLCQ
|d LVT
|d STF
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 961813761
|a 1010958552
|a 1087399041
|
020 |
|
|
|a 9781681082998
|q (electronic bk.)
|
020 |
|
|
|a 1681082993
|q (electronic bk.)
|
020 |
|
|
|z 9781681082301
|
029 |
1 |
|
|a AU@
|b 000067961294
|
029 |
1 |
|
|a DEBSZ
|b 493178554
|
035 |
|
|
|a (OCoLC)961455685
|z (OCoLC)961813761
|z (OCoLC)1010958552
|z (OCoLC)1087399041
|
050 |
|
4 |
|a Q342
|b .K757 2016eb
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kristensen, Terje.
|
245 |
1 |
0 |
|a Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms.
|
260 |
|
|
|a Sharjah :
|b Bentham Science Publishers,
|c 2016.
|
300 |
|
|
|a 1 online resource (135 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a PREFACE ; ACKNOWLEDGEMENTS; CONFILICT OF INTEREST; Introduction ; 1.1. OVERVIEW; 1.2. GOAL; 1.3. OUTLINE; Chapter 1 (Introduction); Chapter 2 (Background); Chapter 3 (Evolutionary Algorithms); Chapter 4 (System Specification); Chapter 5 (Design and Implementation); Chapter 6 (Data Visualization); Chapter 7 (User Interface); Chapter 8 (Case Study); Chapter 9 (Discussion); Chapter 10 (Summary and Future); Background ; 2.1. CLUSTERING; 2.1.1. Introduction; 2.1.2. General Definition; 2.1.3. Object Similarity; Proximity Measure for Continuous Values; Proximity Measure for Discrete Values.
|
505 |
8 |
|
|a Proximity Measure for Mixed Values2.1.4. Clustering Methods; Hierarchical Clustering; Partitional Clustering; Fuzzy Clustering; 2.1.5. Cluster Membership; 2.1.6. Cluster Validation; Evolutionary Algorithms ; 3.1. INTRODUCTION; 3.1.1. Data Representation Chromosome; 3.1.2. Initial Population; 3.1.3. Fitness Function; 3.1.4. Selection; 3.1.5. Reproduction; 3.1.6. Stopping conditions; 3.2. MATHEMATICAL OPTIMIZATION; 3.2.1. Maxima and Mimima; 3.2.2. Optimization Problems; 3.3. GENETIC ALGORITHMS; 3.3.1. Crossover; 3.3.2. Mutation; 3.3.3. Control Parameters; 3.4. GENETIC PROGRAMMING.
|
505 |
8 |
|
|a 3.4.1. Tree Based Representation3.4.2. Fitness Function; 3.4.3. Crossover Operators; 3.4.4. Mutation Operators; 3.5. EVOLUTIONARY PROGRAMMING; 3.5.1. Representation; 3.5.2. Mutation Operators; 3.5.3. Selection Operators; 3.6. EVOLUTION STRATEGIES; 3.6.1. Generic Evolution Strategies Algorithm; 3.6.2. Strategy Parameter; 3.6.3. Selection Operator; 3.6.4. Crossover Operators; 3.6.5. Mutation Operator; 3.7. DIFFERENTIAL EVOLUTION; 3.7.1. Mutation Operator; 3.7.2. Crossover Operator; 3.7.3. Selection; 3.7.4. Control Parameters; 3.8. CULTURAL ALGORITHMS; 3.8.1. Belief Space.
|
505 |
8 |
|
|a 3.8.2. Acceptance Function3.8.3. Influence Function; System Specification ; 4.1. INTRODUCTION; 4.2. SYSTEM OBJECTIVE; 4.3. FUNCTIONAL REQUIREMENTS; 4.3.1. System Input; 4.3.2. Cluster Analysis; 4.3.3. Visualization; 4.4. NON-FUNCTIONAL REQUIREMENTS; 4.4.1. Functional Correctness; 4.4.2. Extensibility; 4.4.3. Maintainability; 4.4.4. Portability; 4.4.1. Usability; Design and Implementation ; 5.1. INTRODUCTION; 5.2. SYSTEM ARCHITECTURE; 5.2.1. Dependency Injection; 5.2.2. Open-Closed Principle; 5.3. TOOLS AND TECHNOLOGIES; 5.3.1. Java; 5.3.2. JavaFX; 5.3.3. Netbeans; 5.3.4. Maven.
|
505 |
8 |
|
|a 5.3.5. Git and GitHub5.3.6. JUnit; 5.4. DATA STRUCTURE AND CLUSTERING; 5.4.1. Import Data and Data Structure; 5.4.2. K-means Algorithm; Complexity of K-Means Operations; 5.5. EVOLUTIONARY ALGORITHMS; 5.5.1. Genetic Clustering Algorithm; Population Initialization; Fitness Evaluation; Evolve Population; Termination Criteria; Time-Complexity; 5.5.2. Differential Evolution Based Clustering Algorithm; Population Initialization; Mutation; Crossover; Termination Criteria; Time-complexity; 5.5.3. Selection Operators; Random Selection; Proportional Selection; 5.5.4. Mutation Operators.
|
500 |
|
|
|a Floating-Point Mutation.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Computational intelligence.
|
650 |
|
6 |
|a Intelligence informatique.
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Computational intelligence
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Kristensen, Terje.
|t Computational Intelligence, Evolutionary Computing, Evolutionary Clustering Algorithms.
|d Sharjah : Bentham Science Publishers, ©2016
|z 9781681082301
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1511878
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4727875
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1511878
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13237571
|
994 |
|
|
|a 92
|b IZTAP
|