|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn960643263 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
161013s2016 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDX
|d IDEBK
|d EBLCP
|d N$T
|d NRC
|d OCLCF
|d IDB
|d COO
|d OTZ
|d UIU
|d OCLCQ
|d WYU
|d TKN
|d LEAUB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 960737779
|a 960834934
|a 960838090
|a 961818180
|a 961828500
|a 962257607
|a 962442750
|a 962786862
|a 962805530
|a 964333354
|a 965147676
|a 966891334
|
020 |
|
|
|a 9781316729618
|q (electronic bk.)
|
020 |
|
|
|a 1316729613
|q (electronic bk.)
|
020 |
|
|
|a 9781316729014
|q (electronic bk.)
|
020 |
|
|
|a 131672901X
|q (electronic bk.)
|
020 |
|
|
|z 1107097614
|
020 |
|
|
|z 9781107097612
|
029 |
1 |
|
|a AU@
|b 000059028675
|
035 |
|
|
|a (OCoLC)960643263
|z (OCoLC)960737779
|z (OCoLC)960834934
|z (OCoLC)960838090
|z (OCoLC)961818180
|z (OCoLC)961828500
|z (OCoLC)962257607
|z (OCoLC)962442750
|z (OCoLC)962786862
|z (OCoLC)962805530
|z (OCoLC)964333354
|z (OCoLC)965147676
|z (OCoLC)966891334
|
050 |
|
4 |
|a QA242
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512.74
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Evertse, J. H.,
|e author.
|
245 |
1 |
0 |
|a Discriminant equations in Diophantine number theory /
|c Janj-Hendrik Evertse, Kálmán Gyoʺry.
|
264 |
|
1 |
|a Cambridge, UK :
|b Cambridge University Press,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Half title; Series; Title; Copyright; Contents; Preface; Acknowledgments; Summary; Part One Preliminaries; 1 Finite Étale Algebras over Fields; 1.1 Terminology for Rings and Algebras; 1.2 Finite Field Extensions; 1.3 Basic Facts on Finite Étale Algebras over Fields; 1.4 Resultants and Discriminants of Polynomials; 1.5 Characteristic Polynomial, Trace, Norm, Discriminant; 1.6 Integral Elements and Orders; 2 Dedekind Domains; 2.1 Definitions; 2.2 Ideal Theory of Dedekind Domains; 2.3 Discrete Valuations; 2.4 Localization; 2.5 Integral Closure in Finite Field Extensions
|
505 |
8 |
|
|a 2.6 Extensions of Discrete Valuations2.7 Norms of Ideals; 2.8 Discriminant and Different; 2.9 Lattices over Dedekind Domains; 2.10 Discriminants of Lattices of Étale Algebras; 3 Algebraic Number Fields; 3.1 Definitions and Basic Results; 3.1.1 Absolute Norm of an Ideal; 3.1.2 Discriminant, Class Number, Unit Group and Regulator; 3.1.3 Explicit Estimates; 3.2 Absolute Values: Generalities; 3.3 Absolute Values and Places on Number Fields; 3.4 S-integers, S-units and S-norm; 3.5 Heights and Houses; 3.6 Estimates for Units and S-units
|
505 |
8 |
|
|a 3.7 Effective Computations in Number Fields and Étale Algebras3.7.1 Algebraic Number Fields; 3.7.2 Relative Extensions and Finite Étale Algebras; 4 Tools from the Theory of Unit Equations; 4.1 Effective Results over Number Fields; 4.1.1 Equations in Units of Rings of Integers; 4.1.2 Equations with Unknowns from a Finitely Generated Multiplicative Group; 4.2 Effective Results over Finitely Generated Domains; 4.3 Ineffective Results, Bounds for the Number of Solutions; Part Two Monic Polynomials and Integral Elements of Given Discriminant, Monogenic Orders; 5 Basic Finiteness Theorems
|
505 |
8 |
|
|a 5.1 Basic Facts on Finitely Generated Domains5.2 Discriminant Forms and Index Forms; 5.3 Monogenic Orders, Power Bases, Indices; 5.4 Finiteness Results; 5.4.1 Discriminant Equations for Monic Polynomials; 5.4.2 Discriminant Equations for Integral Elements in Étale Algebras; 5.4.3 Discriminant Form and Index Form Equations; 5.4.4 Consequences for Monogenic Orders; 6 Effective Results over Z; 6.1 Discriminant Form and Index Form Equations; 6.2 Applications to Integers in a Number Field; 6.3 Proofs; 6.4 Algebraic Integers of Arbitrary Degree; 6.5 Proofs
|
505 |
8 |
|
|a 6.6 Monic Polynomials of Given Discriminant6.7 Proofs; 6.8 Notes; 6.8.1 Some Related Results; 6.8.2 Generalizations over Z; 6.8.3 Other Applications; 7 Algorithmic Resolution of Discriminant Form and Index Form Equations; 7.1 Solving Discriminant Form and Index Form Equations via Unit Equations, A General Approach; 7.1.1 Quintic Number Fields; 7.1.2 Examples; 7.2 Solving Discriminant Form and Index Form Equations via Thue Equations; 7.2.1 Cubic Number Fields; 7.2.2 Quartic Number Fields; 7.2.3 Examples; 7.3 The Solvability of Index Equations in Various Special Number Fields; 7.4 Notes
|
520 |
|
|
|a The first comprehensive and up-to-date account of discriminant equations and their applications. For graduate students and researchers.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Diophantine equations.
|
650 |
|
0 |
|a Algebraic number theory.
|
650 |
|
0 |
|a Arithmetical algebraic geometry.
|
650 |
|
6 |
|a Équations diophantiennes.
|
650 |
|
6 |
|a Théorie algébrique des nombres.
|
650 |
|
6 |
|a Géométrie algébrique arithmétique.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Algebraic number theory
|2 fast
|
650 |
|
7 |
|a Arithmetical algebraic geometry
|2 fast
|
650 |
|
7 |
|a Diophantine equations
|2 fast
|
700 |
1 |
|
|a Györy, Kálmán,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Evertse, Jan-Hendrik.
|t Discriminant equations in diophantine number theory.
|d [Place of publication not identified] : Cambridge Univ Press, 2016
|z 1107097614
|w (OCoLC)944462906
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362671
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4697936
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1362671
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis36600207
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13217001
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13221448
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13259159
|
994 |
|
|
|a 92
|b IZTAP
|