|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_ocn960041744 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
161007s2016 gw ob 000 0 eng d |
010 |
|
|
|a 2016033433
|
040 |
|
|
|a IDEBK
|b eng
|e rda
|e pn
|c IDEBK
|d EBLCP
|d CN3GA
|d OCLCO
|d IDEBK
|d YDX
|d N$T
|d DEBBG
|d IXA
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OTZ
|d CUI
|d HEBIS
|d OCLCO
|d OCLCQ
|d STF
|d DEGRU
|d MERUC
|d SNK
|d DKU
|d IGB
|d D6H
|d COCUF
|d OCLCQ
|d CUY
|d LOA
|d K6U
|d ICG
|d ZCU
|d OCLCQ
|d VTS
|d VT2
|d U3W
|d OCLCO
|d WYU
|d OCLCQ
|d G3B
|d LVT
|d S8J
|d S9I
|d TKN
|d LEAUB
|d DKC
|d OCLCQ
|d OCLCA
|d M8D
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCO
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 962814406
|a 964379058
|a 964536249
|a 965345367
|a 1055377137
|a 1066561053
|a 1081199891
|a 1228604645
|a 1259184626
|
020 |
|
|
|a 3110484382
|q (ebk)
|
020 |
|
|
|a 9783110484380
|
020 |
|
|
|a 9783110484397
|
020 |
|
|
|a 3110484390
|
020 |
|
|
|z 3110482665
|
020 |
|
|
|z 3110483394
|
020 |
|
|
|z 9783110482669
|
020 |
|
|
|z 9783110483390
|q (PDF)
|
024 |
7 |
|
|a 10.1515/9783110484380
|2 doi
|
029 |
1 |
|
|a AU@
|b 000066766401
|
029 |
1 |
|
|a CHBIS
|b 010896443
|
029 |
1 |
|
|a CHVBK
|b 483397008
|
029 |
1 |
|
|a DEBBG
|b BV043867770
|
029 |
1 |
|
|a GBVCP
|b 871510979
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999930621805765
|
035 |
|
|
|a (OCoLC)960041744
|z (OCoLC)962814406
|z (OCoLC)964379058
|z (OCoLC)964536249
|z (OCoLC)965345367
|z (OCoLC)1055377137
|z (OCoLC)1066561053
|z (OCoLC)1081199891
|z (OCoLC)1228604645
|z (OCoLC)1259184626
|
037 |
|
|
|a 957926
|b MIL
|
050 |
|
4 |
|a QA649
|b .M58 2016
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.373
|
084 |
|
|
|a 31B10
|a 31B25
|a 31C12
|a 35A01
|a 35B20
|a 35J08
|a 35J25
|a 35J55
|a 35J57
|a 35Q61
|a 35R01
|a 42B20
|a 42B25
|a 42B37
|a 45A05
|a 45B05
|a 45E05
|a 45F15
|a 45P05
|a 47B38
|a 47G10
|a 49Q15
|a 58A10
|a 58A12
|a 58A14
|a 58A15
|a 58A30
|a 58C35
|a 58J05
|a 58J32
|a 78A30
|2 msc
|
084 |
|
|
|a SK 540
|2 rvk
|0 (DE-625)rvk/143245:
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Mitrea, Dorina,
|d 1965-
|e author.
|
245 |
1 |
4 |
|a The Hodge-Laplacian :
|b boundary value problems on Riemannian manifolds /
|c Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b De Gruyter,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a De Gruyter Studies in Mathematics,
|x 0179-0986 ;
|v Volume 64
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains.
|
504 |
|
|
|a Includes bibliographical references.
|
520 |
|
|
|a The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Riemannian manifolds.
|
650 |
|
0 |
|a Boundary value problems.
|
650 |
|
6 |
|a Variétés de Riemann.
|
650 |
|
6 |
|a Problèmes aux limites.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Boundary value problems
|2 fast
|
650 |
|
7 |
|a Riemannian manifolds
|2 fast
|
650 |
|
7 |
|a Laplace-Operator
|2 gnd
|
650 |
|
7 |
|a Randwertproblem
|2 gnd
|
650 |
|
7 |
|a Riemannscher Raum
|2 gnd
|
700 |
1 |
|
|a Mitrea, Irina,
|e author.
|
700 |
1 |
|
|a Mitrea, Marius,
|e author.
|
700 |
1 |
|
|a Taylor, Michael E.,
|d 1946-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Mitrea, Dorina.
|t Hodge-Laplacian.
|d Berlin, De Guyter, 2016
|z 9783110482669
|z 3110482665
|w (DLC) 2016033433
|w (OCoLC)951452997
|
830 |
|
0 |
|a De Gruyter studies in mathematics ;
|v Volume 64.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH30716020
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35151839
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110484380
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4707943
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1362730
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis34709323
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12887094
|
994 |
|
|
|a 92
|b IZTAP
|