Cargando…

The Hodge-Laplacian : boundary value problems on Riemannian manifolds /

The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be partic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mitrea, Dorina, 1965- (Autor), Mitrea, Irina (Autor), Mitrea, Marius (Autor), Taylor, Michael E., 1946- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, 2016.
Colección:De Gruyter studies in mathematics ; Volume 64.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn960041744
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 161007s2016 gw ob 000 0 eng d
010 |a  2016033433 
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d EBLCP  |d CN3GA  |d OCLCO  |d IDEBK  |d YDX  |d N$T  |d DEBBG  |d IXA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OTZ  |d CUI  |d HEBIS  |d OCLCO  |d OCLCQ  |d STF  |d DEGRU  |d MERUC  |d SNK  |d DKU  |d IGB  |d D6H  |d COCUF  |d OCLCQ  |d CUY  |d LOA  |d K6U  |d ICG  |d ZCU  |d OCLCQ  |d VTS  |d VT2  |d U3W  |d OCLCO  |d WYU  |d OCLCQ  |d G3B  |d LVT  |d S8J  |d S9I  |d TKN  |d LEAUB  |d DKC  |d OCLCQ  |d OCLCA  |d M8D  |d UKAHL  |d OCLCQ  |d QGK  |d OCLCO  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 962814406  |a 964379058  |a 964536249  |a 965345367  |a 1055377137  |a 1066561053  |a 1081199891  |a 1228604645  |a 1259184626 
020 |a 3110484382  |q (ebk) 
020 |a 9783110484380 
020 |a 9783110484397 
020 |a 3110484390 
020 |z 3110482665 
020 |z 3110483394 
020 |z 9783110482669 
020 |z 9783110483390  |q (PDF) 
024 7 |a 10.1515/9783110484380  |2 doi 
029 1 |a AU@  |b 000066766401 
029 1 |a CHBIS  |b 010896443 
029 1 |a CHVBK  |b 483397008 
029 1 |a DEBBG  |b BV043867770 
029 1 |a GBVCP  |b 871510979 
029 1 |a DKDLA  |b 820120-katalog:999930621805765 
035 |a (OCoLC)960041744  |z (OCoLC)962814406  |z (OCoLC)964379058  |z (OCoLC)964536249  |z (OCoLC)965345367  |z (OCoLC)1055377137  |z (OCoLC)1066561053  |z (OCoLC)1081199891  |z (OCoLC)1228604645  |z (OCoLC)1259184626 
037 |a 957926  |b MIL 
050 4 |a QA649  |b .M58 2016 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.373 
084 |a 31B10  |a 31B25  |a 31C12  |a 35A01  |a 35B20  |a 35J08  |a 35J25  |a 35J55  |a 35J57  |a 35Q61  |a 35R01  |a 42B20  |a 42B25  |a 42B37  |a 45A05  |a 45B05  |a 45E05  |a 45F15  |a 45P05  |a 47B38  |a 47G10  |a 49Q15  |a 58A10  |a 58A12  |a 58A14  |a 58A15  |a 58A30  |a 58C35  |a 58J05  |a 58J32  |a 78A30  |2 msc 
084 |a SK 540  |2 rvk  |0 (DE-625)rvk/143245: 
049 |a UAMI 
100 1 |a Mitrea, Dorina,  |d 1965-  |e author. 
245 1 4 |a The Hodge-Laplacian :  |b boundary value problems on Riemannian manifolds /  |c Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a De Gruyter Studies in Mathematics,  |x 0179-0986 ;  |v Volume 64 
588 0 |a Print version record. 
505 0 |a Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. 
504 |a Includes bibliographical references. 
520 |a The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex. 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Riemannian manifolds. 
650 0 |a Boundary value problems. 
650 6 |a Variétés de Riemann. 
650 6 |a Problèmes aux limites. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Riemannian manifolds  |2 fast 
650 7 |a Laplace-Operator  |2 gnd 
650 7 |a Randwertproblem  |2 gnd 
650 7 |a Riemannscher Raum  |2 gnd 
700 1 |a Mitrea, Irina,  |e author. 
700 1 |a Mitrea, Marius,  |e author. 
700 1 |a Taylor, Michael E.,  |d 1946-  |e author. 
776 0 8 |i Print version:  |a Mitrea, Dorina.  |t Hodge-Laplacian.  |d Berlin, De Guyter, 2016  |z 9783110482669  |z 3110482665  |w (DLC) 2016033433  |w (OCoLC)951452997 
830 0 |a De Gruyter studies in mathematics ;  |v Volume 64. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30716020 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35151839 
938 |a De Gruyter  |b DEGR  |n 9783110484380 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4707943 
938 |a EBSCOhost  |b EBSC  |n 1362730 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34709323 
938 |a YBP Library Services  |b YANK  |n 12887094 
994 |a 92  |b IZTAP