Cargando…

Multiscale thermal transport in energy systems /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhang, Yuwen, 1965- (Editor ), He, Ya-Ling, 1963- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Publishers, [2016]
Colección:Energy science, engineering and technology
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Chapter 1; Boiling and Evaporation on Micro/Nano-Engineered Surfaces; Abstract; 1. Introduction; 1.1. Boiling Heat Transfer; Surface Structure; Interfacial Wettability; Present Work on Boiling Heat Transfer; 1.2. Evaporation Heat Transfer; Literature Review of Capillary Evaporation; Present Work on Evaporation Heat Transfer; 2. Carbon Nanotube Enabled Hydrophobic-Hydrophilic Composite Interfaces to Enhance Nucleate Boiling; 2.1. Introduction of Nucleate Boiling; 2.2. Synthesis of Hydrophobic-Hydrophilic Composite Interfaces; 2.3. Contact Angle Measurement
  • 2.4. Characterization of the Bonding Forces2.5. Pool Boiling Testing and Data Reduction; 2.6. Boiling Experiment on the Hydrophobic-Hydrophilic Surfaces; 2.7. Enhancement Mechanism; 3. Micromembrane-Enhanced Capillary Evaporation; 3.1. Introduction of Capillary Evaporation; 3.2. Design of Micromembrane-Enhanced Evaporating Surfaces; 3.3. Experimental Apparatus and Data Reduction; Experimental Apparatus; Data Reduction; 3.4. Results and Discussion; Capillary Evaporation Curves; Capillary Evaporation on Micromembrane-Enhanced Evaporating Surfaces
  • 3.5. Summary of the Micromembrane-Enhanced Evaporating Surfaces4. Enhanced Capillary Evaporation on Micromembrane-Enhanced Hybrid Wicks with Atomic Layer Deposited Silica; 4.1. Introduction of Enhanced Capillary Evaporation; 4.2. Design and ALD Deposition; Design of Micromembrane-Enhanced Hybrid Wicks; ALD Deposition of Silica; 4.3. Characterization of the ALD SIO2 Coated Interface; 4.4. Two Dimensional Model of Temperature Distribution; 4.5. Enhanced Capillary Evaporation; 4.6. Evaporation Enhancement Mechanism; 4.7. Summary of the Micromembrane-Enhanced Hybrid Wicks
  • 5. Transport Phenomena on Nanoengineered Hydrophobic-Hydrophilic Interfaces5.1. Introduction; 5.2. Synthesis and Deposition; 5.3. Hierarchical Hydrophobic-Hydrophilic Surfaces; 5.4. Capillary Evaporation Performances; 5.5. CHF Enhancement Mechanism; 5.6. Summary of the Nanoengineered Hybrid Wicks; Conclusion; References; Chapter 2; Multiscale Modeling of Nanostructure-Enhanced Thin Film Evaporation; Abstract; Nomenclature; 1. Introduction; 2. Modeling; 2.1. Disjoining Pressure; 2.2 Heat Transfer Coefficient; 2.3. Thin Film Instability; 3. Molecular Modeling
  • 3.1. MD Simulation for Disjoining Pressure3.2. NEMD Simulation for Thin Film Evaporation; 3.3. Thin Film Instability; 3.4. Interaction Energy per Unit Area; 3.5. Vibrational Density of States; 4. Effect of Nanostructures on Disjoining Pressure; 4.1. Meniscus Shape; 4.2. Disjoining Pressure; 5. Effect of Nanostructures on Kapitza Resistance; 5.1. Kapitza Resistance With and Without Phase Change; 5.2. Effect of Interaction Energy per Unit Area; 5.3. Effect of VDOS Mismatch; 6. Effect of Nanostructures on Heat Transfer Coefficient; 7. Effect of Nanostructures on Film Stability; Conclusion