Mastering scientific computing with R /
"With this book, you will learn not just about R, but how to use R to answer conceptual, scientific, and experimental questions. Beginning with an overview of fundamental R concepts, you'll learn how R can be used to achieve the most commonly needed scientific data analysis tasks: testing...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Birmingham, England :
Packt Publishing,
2015.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Copyright
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Table of Contents
- Preface
- Chapter 1: Programming with R
- Data structures in R
- Atomic vectors
- Operations on vectors
- Lists
- Attributes
- Factors
- Multidimensional arrays
- Matrices
- Data frames
- Loading data into R
- Saving data frames
- Basic plots and the ggplot2 package
- Flow control
- The for() loop
- The apply() function
- The if() statement
- The while() loop
- The repeat{} and break statement
- FunctionsGeneral programming and debugging tools
- Summary
- Chapter 2: Statistical Methods with R
- Descriptive statistics
- Data variability
- Confidence intervals
- Probability distributions
- Fitting distributions
- Higher order moments of a distribution
- Other statistical tests to fit distributions
- The propagate package
- Hypothesis testing
- Proportion tests
- Two sample hypothesis tests
- Unit root tests
- Summary
- Chapter 3: Linear Models
- An overview of statistical modeling
- Model formulas
- Explanatory variables interactionsError terms
- The intercept as parameter 1
- Updating a model
- Linear regression
- Plotting a slope
- Analysis of variance
- Generalized linear models
- Generalized additive models
- Linear discriminant analysis
- Principal component analysis
- Clustering
- Summary
- Chapter 4: Nonlinear Methods
- Nonparametric and parametric models
- The adsorption and body measures datasets
- Theory-driven nonlinear regression
- Visually exploring nonlinear relationships
- Extending the linear framework
- Polynomial regressionPerforming a polynomial regression in R
- Spline regression
- Nonparametric nonlinear methods
- Kernel regression
- Kernel weighted local polynomial fitting
- Optimal bandwidth selection
- A practical scientific application of kernel regression
- Locally weighted polynomial regression and the loess function
- Nonparametric methods with the np package
- Nonlinear quantile regression
- Summary
- Chapter 5: Linear Algebra
- Matrices and linear algebra
- Matrices in R
- Vectors in R
- Matrix notation
- The physical functioning datasetBasic matrix operations
- Element-wise matrix operations
- Matrix subtraction
- Matrix addition
- Matrix sweep
- Basic matrix-wise operations
- Transposition
- Matrix multiplication
- Matrix inversion
- Determinants
- Triangular matrices
- Matrix decomposition
- QR decomposition
- Eigenvalue decomposition
- Lower upper decomposition
- Cholesky decomposition
- Singular value decomposition
- Applications
- Rasch analysis using linear algebra and a paired comparisons matrix