Cargando…

Python data analysis cookbook : over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps /

Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorith...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Idris, Ivan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Colección:Quick answers to common problems.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn954195366
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 160729s2016 enk o 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d YDXCP  |d N$T  |d OCLCF  |d UMI  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d G3B  |d IGB  |d QGK  |d OCLCO  |d OCLCQ 
019 |a 957385973  |a 960471461  |a 1259231122 
020 |a 1785283855  |q (electronic bk.) 
020 |a 9781785283857  |q (electronic bk.) 
020 |z 178528228X 
020 |z 9781785282287 
029 1 |a DEBSZ  |b 480371717 
029 1 |a AU@  |b 000058871049 
029 1 |a AU@  |b 000065314562 
029 1 |a AU@  |b 000067103160 
035 |a (OCoLC)954195366  |z (OCoLC)957385973  |z (OCoLC)960471461  |z (OCoLC)1259231122 
037 |a 941953  |b MIL 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 000000  |2 bisacsh 
072 7 |a COM  |x 051360  |2 bisacsh 
072 7 |a COM  |x 021000  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Idris, Ivan,  |e author. 
245 1 0 |a Python data analysis cookbook :  |b over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps /  |c Ivan Idris. 
260 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Quick answers to common problems 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed August 31, 2016). 
520 |a Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in ?cookboo... 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Database management. 
650 6 |a Python (Langage de programmation) 
650 6 |a Bases de données  |x Gestion. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x General.  |2 bisacsh 
650 7 |a Database management.  |2 fast  |0 (OCoLC)fst00888037 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 |z 1-78528-228-X 
830 0 |a Quick answers to common problems. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1290098  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781785282287/?ar  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1290098 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34551430 
938 |a YBP Library Services  |b YANK  |n 13090909 
994 |a 92  |b IZTAP