Cargando…

Probability Theory and Statistical Applications : a Profound Treatise for Self-Study.

This accessible and easy-to-read book provides many examples to illustrate diverse topics in probability and statistics, from initial concepts up to advanced calculations. Special attention is devoted e.g. to independency of events, inequalities in probability and functions of random variables. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zörnig, Peter
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin/Boston : De Gruyter, 2016.
Colección:De Gruyter textbook.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface ; Contents ; 1 Mathematics revision ; 1.1 Basic notions of sets ; 1.2 Basic concepts of combinatorics ; 1.2.1 More about binomial coefficients ; 1.2.2 Specific permutations and a generalization ; 1.3 Some special functions ; 1.4 Integration of bi-dimensional functions.
  • 2 Introduction to probability 2.1 Mathematical models ; 2.2 Further examples of random experiments ; 2.3 Assigning probabilities to events ; 2.4 Basic notions of probability ; 3 Finite sample spaces ; 3.1 Equally likely outcomes ; 3.2 Variants of a random experiment.
  • 4 Conditional probability and independence 4.1 Conditional probability ; 4.2 Bayes' theorem ; 4.3 Independent events ; 5 One-dimensional random variables ; 5.1 The concept of a random variable ; 5.2 Discrete random variables ; 5.3 The binomial distribution and extensions.
  • 5.4 Continuous random variables 5.5 Distribution function ; 6 Functions of random variables ; 6.1 Continuous random variables ; 6.2 Discrete random variables ; 7 Bi-dimensional random variables ; 7.1 Discrete random variables ; 7.2 Continuous random variables.
  • 7.3 Marginal distributions and independent variables 7.4 Conditional distributions and distribution functions ; 7.5 Functions of a random variable ; 8 Characteristics of random variables ; 8.1 The expected value of a random variable ; 8.2 Expectation of a function of a random variable.