Cargando…

Monitoring of thermal stresses and heating optimization including industrial applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Taler, Jan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, : Nova Publishers, [2016]
Colección:Materials science and technologies
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; List of Symbols; Greek Symbols; Subscripts; Chapter 1; Introduction; Chapter 2; Comparison of the Design and Operation of Supercritical and Drum Boilers with Natural Circulation; 2.1. Natural Circulation Drum Boilers versus Supercritical Once-through Boilers; 2.2. Thermal and Flow Processes in Benson Boilers; 2.3. Monitoring and Optimization of Heating and Cooling of the Boiler Pressure Components; 2.4. Mathematical Modelling of Steam Superheaters; 2.5. Diagnostics of a Supercritical Boiler Operation; Chapter 3.
  • Determining of Thermometer Time Constants and Measurement of Transient Fluid Temperature3.1. Mathematical Models of Thermometers; 3.2. Smoothing of Measurement Data; 3.3. Method of Time Constants Determining; 3.4. The Time Constant of the Thermometer as a Function of Fluid Velocity; 3.5. Examples of Application; 3.6. The Possibility of Applying the Method; Chapter 4; Measurement of Fluid Transient Temperature under High-Pressure; 4.1. Inverse Method to Obtain Accurate Transient Temperature of Fluid; 4.2. Computational Example; 4.2.1. Analytical Method for Generating "Measurement Data."
  • 4.2.2. Computational Validation of the Inverse Method4.3. Example of Application of the Inverse Marching Method; Chapter 5; Monitoring of Thermal Stresses in Pressure Components Using Inverse Heat Conduction Methods; 5.1. Exact Methods; 5.1.1. Mathematical Formulation; 5.1.2. Thermal Stresses in Plane, Cylindrical and Spherical Walls; 5.1.3. Quasi-Steady State; 5.1.4. Smoothing of the Experimental Data; 5.1.5. Example 1; 5.2. Over-Determined Inverse Heat Conduction Problem; 5.2.1. Solving the Over-Determined Inverse Heat Conduction Problem.
  • 5.2.2. Transient Thermal Stresses in Plates, Hollow Cylinders and Hollow Spheres5.2.3. Example; 5.3. Space and Time Marching Methods for Solving the One-Dimensional Nonlinear Inverse Heat Conduction Problems in Cylindrical Components; 5.3.1. Space and Time Marching Methods; 5.3.2. Method I; 5.3.3. Method II; 5.3.4. Experimental Verification; 5.4. Space-Marching Methods for Two-Dimensional Inverse Heat Conduction Problems; 5.4.1. Two-Dimensional IHCP; 5.4.1.1. Flat Plate Element; 5.4.1.2. Cylindrical Element; 5.4.2. Smoothing of Temperature Data; 5.4.3. Two-Dimensional IHCP Test Cases.
  • 5.4.3.1. Rectangular Bar5.4.3.2. Boiler Drum; 5.5. Inverse Method for Temperature and Stress Monitoring in Components of Complex Shape; 5.5.1. Mathematical Formulation of the Finite Volume
  • Finite Element Method for Determining Two-Dimensional Transient Temperature in Fins; 5.5.2. Numerical Verification-Drum-Downcomer Intersection; 5.5.3. Experimental Validation of the Developed Method; 5.6. Final Remarks; Chapter 6; Determination of Allowable Heating and Cooling Rates of Boiler Pressure Elements, Using the Quasi
  • Steady State Approach.
  • 6.1. Quasi
  • Steady Temperature and Stress Distributions in Cylindrical and Spherical Walls without Openings.