Cargando…

The theory of H(b) spaces. Volume 1 /

An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devot...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fricain, Emmanuel, 1971- (Autor), Mashreghi, Javad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, United Kingdom : Cambridge University Press, 2016.
Colección:New mathematical monographs ; 20.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn952582156
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 160630s2016 enka ob 001 0 eng d
040 |a NOC  |b eng  |e rda  |e pn  |c NOC  |d NOC  |d N$T  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCQ 
020 |a 9781316072721  |q (electronic bk.) 
020 |a 131607272X  |q (electronic bk.) 
020 |z 9781107027770  |q (hardback ;  |q volume1) 
020 |z 1107027772  |q (hardback ;  |q volume1) 
035 |a (OCoLC)952582156 
050 4 |a QA322.4  |b .F73 2016 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.733  |2 23 
049 |a UAMI 
100 1 |a Fricain, Emmanuel,  |d 1971-  |e author. 
245 1 4 |a The theory of H(b) spaces.  |n Volume 1 /  |c Emmanuel Fricain, Javad Mashreghi. 
264 1 |a Cambridge, United Kingdom :  |b Cambridge University Press,  |c 2016. 
300 |a 1 online resource (xix, 681 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a New mathematical monographs ;  |v v. 20 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed September 19, 2016). 
504 |a Includes bibliographical references and indexes. 
505 8 |a Machine generated contents note: List of figures; Preface; List of symbols; Important conventions; 1. *Normed linear spaces and their operators; 2. Some families of operators; 3. Harmonic functions on the open unit disc; 4. Analytic functions on the open unit disc; 5. The corona problem; 6. Extreme and exposed points; 7. More advanced results in operator theory; 8. The shift operator; 9. Analytic reproducing kernel Hilbert spaces; 10. Bases in Banach spaces; 11. Hankel operators; 12. Toeplitz operators; 13. Cauchy transform and Clark measures; 14. Model subspaces KT; 15. Bases of reproducing kernels and interpolation; Bibliography; Index. 
520 |a An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Hilbert space. 
650 0 |a Hardy spaces. 
650 0 |a Analytic functions. 
650 0 |a Linear operators. 
650 6 |a Espace de Hilbert. 
650 6 |a Espaces de Hardy. 
650 6 |a Fonctions analytiques. 
650 6 |a Opérateurs linéaires. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Analytic functions.  |2 fast  |0 (OCoLC)fst00808336 
650 7 |a Hardy spaces.  |2 fast  |0 (OCoLC)fst00951434 
650 7 |a Hilbert space.  |2 fast  |0 (OCoLC)fst00956785 
650 7 |a Linear operators.  |2 fast  |0 (OCoLC)fst00999087 
700 1 |a Mashreghi, Javad,  |e author. 
830 0 |a New mathematical monographs ;  |v 20. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946303  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33402317 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31827748 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28247385 
938 |a EBSCOhost  |b EBSC  |n 946303 
994 |a 92  |b IZTAP