Cargando…

Geospatial development by example with Python : build your first interactive map and build location-aware applications using cutting-edge examples in Python /

Build your first interactive map and build location-aware applications using cutting-edge examples in PythonAbout This Book Learn the full geo-processing workflow using Python with open source packages Create press-quality styled maps and data visualization with high-level and reusable code Process...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carreira, Pablo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, January 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Copyright
  • Credits
  • About the Author
  • About the Reviewers
  • www.PacktPub.com
  • Table of Contents
  • Preface
  • Chapter 1: Preparing the Work Environment
  • Installing Python
  • Windows
  • Ubuntu Linux
  • Python packages and package manager
  • The repository of Python packages for Windows
  • Installing packages and required software
  • OpenCV
  • Windows
  • Ubuntu Linux
  • Installing NumPy
  • Windows
  • Ubuntu Linux
  • Installing GDAL and OGR
  • Windows
  • Ubuntu Linux
  • Installing Mapnik
  • Windows
  • Ubuntu Linux
  • Installing Shapely
  • Windows
  • Ubuntu Linux
  • Installing other packages directly from pip
  • Windows
  • Ubuntu Linux
  • Installing an IDE
  • Windows
  • Linux
  • Creating the book project
  • Programming and running your first example
  • Transforming the coordinate system and calculating the area of all countries
  • Sort the countries by area size
  • Summary
  • Chapter 2: The Geocaching App
  • Building the basic application structure
  • Creating the application tree structure
  • Functions and methods
  • Documenting your code
  • Creating the application entry point
  • Downloading geocaching data
  • Geocaching data sources
  • Fetching information from a REST API
  • Downloading data from a URL
  • Downloading data manually
  • Opening the file and getting its contents
  • Preparing the content for analysis
  • Combining functions into an application
  • Setting your current location
  • Finding the closest point
  • Summary
  • Chapter 3: Combining Multiple Data Sources
  • Representing geographic data
  • Representing geometries
  • Making data homogeneous
  • The concept of abstraction
  • Abstracting the geocache point
  • Abstracting geocaching data
  • Importing geocaching data
  • Reading GPX attributes
  • Returning the homogeneous data
  • Converting the data into Geocache objects
  • Merging multiple sources of data.
  • Integrating new functionality into the application
  • Summary
  • Chapter 4: Improving the App Search Capabilities
  • Working with polygons
  • Knowing well-known text
  • Using Shapely to handle geometries
  • Importing polygons
  • Getting the attributes' values
  • Importing lines
  • Converting the spatial reference system and units
  • Geometry relationships
  • Touches
  • Crosses
  • Contains
  • Within
  • Equals or almost equals
  • Intersects
  • Disjoint
  • Filtering by attributes and relations
  • Filtering by multiple attributes
  • Chaining filters
  • Integrating with the app
  • Summary
  • Chapter 5: Making Maps
  • Knowing Mapnik
  • Making a map with pure Python
  • Making a map with a style sheet
  • Creating utility functions to generate maps
  • Changing the data source at runtime
  • Automatically previewing the map
  • Styling maps
  • Map style
  • Polygon style
  • Line styles
  • Text styles
  • Adding layers to the map
  • Point styles
  • Using Python objects as a source of data
  • Exporting geo objects
  • Creating the Map Maker app
  • Using PythonDatasource
  • Using the app with filtering
  • Summary
  • Chapter 6: Working with Remote Sensing Images
  • Understanding how images are represented
  • Opening images with OpenCV
  • Knowing numerical types
  • Processing remote sensing images and data
  • Mosaicking images
  • Adjusting the values of the images
  • Cropping an image
  • Creating a shaded relief image
  • Building an image processing pipeline
  • Creating a RasterData class
  • Summary
  • Chapter 7: Extract Information from Raster Data
  • Getting the basic statistics
  • Preparing the data
  • Printing simple information
  • Formatting the output information
  • Calculating quartiles, histograms, and other statistics
  • Making statistics a lazy property
  • Creating color classified images
  • Choosing the right colors for a map
  • Blending images.
  • Showing statistics with colors
  • Using the histogram to colorize the image
  • Summary
  • Chapter 8: Data Miner App
  • Measuring execution time
  • Code profiling
  • Storing information on a database
  • Creating an Object Relational Mapping
  • Preparing the environment
  • Changing our models
  • Customizing a manager
  • Generating the tables and importing data
  • Filtering the data
  • Importing massive amount of data
  • Optimizing database inserts
  • Optimizing data parsing
  • Importing OpenStreetMap points of interest
  • Removing the test data
  • Populating the database with real data
  • Searching for data and crossing information
  • Filtering using boundaries
  • Summary
  • Chapter 9: Processing Big Images
  • Working with satellite images
  • Getting Landsat 8 images
  • Memory and images
  • Processing images in chunks
  • Using GDAL to open images
  • Iterating through the whole image
  • Creating image compositions
  • True color compositions
  • Processing specific regions
  • False color compositions
  • Summary
  • Chapter 10: Parallel Processing
  • Multiprocessing basics
  • Block iteration
  • Improving the image resolution
  • Image resampling
  • Pan sharpening
  • Summary
  • Index.