Cargando…

Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chapple, Simon R. (Autor), Troup, Eilidh (Autor), Forster, Thorsten (Autor), Sloan, Terence (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Limited, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn951337124
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 160607s2016 enk o 001 0 eng d
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d IDEBK  |d N$T  |d OCLCO  |d N$T  |d UMI  |d OCLCF  |d KSU  |d DEBSZ  |d DEBBG  |d C6I  |d VT2  |d OCLCQ  |d UOK  |d CEF  |d WYU  |d G3B  |d UAB  |d IGB  |d STF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 952413857 
020 |a 9781784394622  |q (electronic bk.) 
020 |a 1784394629  |q (electronic bk.) 
020 |z 1784394009 
020 |z 9781784394004 
029 1 |a DEBSZ  |b 480361983 
029 1 |a DEBBG  |b BV043969604 
029 1 |a DEBSZ  |b 485801302 
029 1 |a GBVCP  |b 882756575 
035 |a (OCoLC)951337124  |z (OCoLC)952413857 
037 |a CL0500000751  |b Safari Books Online 
050 4 |a QA76.642 
072 7 |a COM  |x 051220  |2 bisacsh 
082 0 4 |a 005.2/75  |2 23 
049 |a UAMI 
245 0 0 |a Mastering parallel programming with R :  |b master the robust features of R parallel programming to accelerate your data science computations /  |c Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. 
264 1 |a Birmingham, UK :  |b Packt Publishing Limited,  |c 2016. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
500 |a Includes index. 
588 0 |a Online resource, title from PDF title page (Ebsco, viewed on July 28, 2016). 
520 8 |a Annotation  |b Master the robust features of R parallel programming to accelerate your data science computationsAbout This Book*Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest*Become an expert in writing the most efficient and highest performance parallel algorithms in R*Get to grips with the concept of parallelism to accelerate your existing R programsWho This Book Is ForThis book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks.What You Will Learn*Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package*Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS)*Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code*Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages*Build and extend a parallel R package (SPRINT) with your own MPI-based routines*Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL*Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them*Build a task farm master-worker, spatial grid, and hybrid parallel R programsIn DetailR is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources.Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Parallel programming (Computer science) 
650 0 |a R (Computer program language) 
650 6 |a Programmation parallèle (Informatique) 
650 6 |a R (Langage de programmation) 
650 7 |a COMPUTERS / Programming / Parallel  |2 bisacsh 
650 7 |a Parallel programming (Computer science)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
700 1 |a Chapple, Simon R.  |e author. 
700 1 |a Troup, Eilidh,  |e author. 
700 1 |a Forster, Thorsten,  |e author. 
700 1 |a Sloan, Terence,  |e author. 
776 0 8 |i Print version:  |z 1784394009  |z 9781784394004  |w (OCoLC)949750993 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1243721  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 13017083 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34551437 
938 |a EBSCOhost  |b EBSC  |n 1243721 
994 |a 92  |b IZTAP