Cargando…

Designing machine learning systems with Python : design efficient machine learning systems that give you more accurate results /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Julian, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn947111620
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 160422s2016 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d N$T  |d YDXCP  |d VT2  |d KSU  |d DEBSZ  |d DEBBG  |d OCLCQ  |d OCLCF  |d CEF  |d AGLDB  |d IGB  |d RDF  |d OCLCO  |d INARC  |d OCLCQ  |d OCLCO 
019 |a 946710383 
020 |a 9781785880780  |q electronic bk. 
020 |a 1785880780  |q electronic bk. 
020 |z 9781785882951 
020 |a 1785882953 
020 |a 9781785882951 
029 1 |a DEBSZ  |b 480367736 
029 1 |a DEBBG  |b BV043969296 
029 1 |a DEBSZ  |b 485798115 
029 1 |a GBVCP  |b 882849662 
029 1 |a AU@  |b 000062539795 
035 |a (OCoLC)947111620  |z (OCoLC)946710383 
037 |a CL0500000734  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Julian, David,  |e author. 
245 1 0 |a Designing machine learning systems with Python :  |b design efficient machine learning systems that give you more accurate results /  |c David Julian. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 |a Description based on online resource; title from cover (Safari, viewed April 21, 2016). 
500 |a Includes index. 
520 8 |a Annotation  |b Design efficient machine learning systems that give you more accurate resultsAbout This Book Gain an understanding of the machine learning design process Optimize machine learning systems for improved accuracy Understand common programming tools and techniques for machine learning Develop techniques and strategies for dealing with large amounts of data from a variety of sources Build models to solve unique tasksWho This Book Is ForThis book is for data scientists, scientists, or just the curious. To get the most out of this book, you will need to know some linear algebra and some Python, and have a basic knowledge of machine learning concepts.What You Will Learn Gain an understanding of the machine learning design process Optimize the error function of your machine learning system Understand the common programming patterns used in machine learning Discover optimizing techniques that will help you get the most from your data Find out how to design models uniquely suited to your taskIn DetailMachine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles.There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more.Style and approachThis easy-to-follow, step-by-step guide covers the most important machine learning models and techniques from a design perspective. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewer; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Thinking in Machine Learning; The human interface; Design principles; Types of questions; Are you asking the right question?; Tasks; Classification; Regression; Clustering; Dimensionality reduction; Errors; Optimization; Linear programming; Models; Features; Unified modeling language; Class diagrams; Object diagrams; Activity diagrams; State diagrams; Summary; Chapter 2: Tools and Techniques; Python for machine learning; IPython console; Installing the SciPy stack; NumPY 
505 8 |a Constructing and transforming arraysMathematical operations; Matplotlib; Pandas; SciPy; Scikit-learn; Summary; Chapter 3: Turning Data into Information; What is data?; Big data; Challenges of big data; Data volume; Data velocity; Data variety; Data models; Data distributions; Data from databases; Data from the Web; Data from natural language; Data from images; Data from application programming interfaces; Signals; Data from sound; Cleaning data; Visualizing data; Summary; Chapter 4: Models -- Learning from Information; Logical models; Generality ordering; Version space; Coverage space 
505 8 |a PAC learning and computational complexityTree models; Purity; Rule models; The ordered list approach; Set-based rule models; Summary; Chapter 5: Linear Models; Introducing least squares; Gradient descent; The normal equation; Logistic regression; The Cost function for logistic regression; Multiclass classification; Regularization; Summary; Chapter 6: Neural Networks; Getting started with neural networks; Logistic units; Cost function; Minimizing the cost function; Implementing a neural network; Gradient checking; Other neural net architectures; Summary 
505 8 |a Chapter 7: Features -- How Algorithms See the WorldFeature types; Quantitative features; Ordinal features; Categorical features; Operations and statistics; Structured features; Transforming features; Discretization; Normalization; Calibration; Principle component analysis; Summary; Chapter 8: Learning with Ensembles; Ensemble types; Bagging; Random forests; Extra trees; Boosting; Adaboost; Gradient boosting; Ensemble strategies; Other methods; Summary; Chapter 9: Design Strategies and Case Studies; Evaluating model performance; Model selection; Gridsearch; Learning curves 
505 8 |a Real-world case studiesBuilding a recommender system; Content-based filtering; Collaborative filtering; Reviewing the case study; Insect detection in greenhouses; Reviewing the case study; Machine learning at a glance; Summary; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning  |x Development. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique  |x Développement. 
650 7 |a COMPUTERS / Programming Languages / Python  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1218065  |z Texto completo 
938 |a Internet Archive  |b INAR  |n designingmachine0000juli 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34384883 
938 |a EBSCOhost  |b EBSC  |n 1218065 
938 |a YBP Library Services  |b YANK  |n 12990189 
994 |a 92  |b IZTAP