Cargando…

R machine learning by example : understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully /

About This BookGet to grips with the concepts of machine learning through exciting real-world examples. Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning. Learn to build your own machine learning system with this example-based practi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bali, Raghav (Autor), Sarkar, Dipanjan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn946106058
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 160408s2016 enka ob 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d HNK  |d N$T  |d OCLCF  |d COO  |d EBLCP  |d DEBBG  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d VT2  |d UOK  |d NLE  |d UKMGB  |d OCLCQ  |d WYU  |d AGLDB  |d G3B  |d IGB  |d STF  |d UKAHL  |d RDF  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 018007180  |2 Uk 
020 |a 1784392634  |q (electronic bk.) 
020 |a 9781784392635  |q (electronic bk.) 
020 |a 1784390844 
020 |a 9781784390846 
020 |z 1784390844 
020 |z 9781784390846 
024 3 |a 9781784390846 
029 1 |a CHNEW  |b 000884498 
029 1 |a CHVBK  |b 374431981 
029 1 |a DEBBG  |b BV043893419 
029 1 |a UKMGB  |b 018007180 
029 1 |a AU@  |b 000067108374 
029 1 |a AU@  |b 000068970585 
035 |a (OCoLC)946106058 
037 |a 909730  |b MIL 
050 4 |a Q325.5  |b .B35 2016eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Bali, Raghav,  |e author. 
245 1 0 |a R machine learning by example :  |b understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully /  |c Raghav Bali, Dipanjan Sarkar. 
246 3 0 |a Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource (xii, 318 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from PDF title page (viewed April 15, 2016). 
504 |a Includes bibliographical references and index. 
520 |a About This BookGet to grips with the concepts of machine learning through exciting real-world examples. Visualize and solve complex problems by using power-packed R constructs and its robust packages for machine learning. Learn to build your own machine learning system with this example-based practical guide. Who This Book Is For. If you are interested in mining useful information from data using state-of-the-art techniques to make data-driven decisions, this is the go-to guide for you. No prior experience with data science is required, although basic knowledge of R is highly desirable. Prior knowledge of machine learning would be helpful but is not necessary. What You Will Learn. Utilize the power of R to handle data extraction, manipulation, and exploration techniques. Use R to visualize data spread across multiple dimensions and extract useful features. Explore the underlying mathematical and logical concepts that drive machine learning algorithms. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewer; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with R and Machine Learning; Delving into the basics of R; Using R as a scientific calculator; Operating on vectors; Special values; Data structures in R; Vectors; Creating vectors; Indexing and naming vectors; Arrays and matrices; Creating arrays and matrices; Names and dimensions; Matrix operations; Lists; Creating and indexing lists; Combining and converting lists; Data frames; Creating data frames; Operating on data frames; Working with functions 
505 8 |a Built-in functionsUser-defined functions; Passing functions as arguments; Controlling code flow; Working with if, if-else, and ifelse; Working with switch; Loops; Advanced constructs; lapply and sapply; apply; tapply; mapply; Next steps with R; Getting help; Handling packages; Machine learning basics; Machine learning -- what does it really mean?; Machine learning -- how is it used in the world?; Types of machine learning algorithms; Supervised machine learning algorithms; Unsupervised machine learning algorithms; Popular machine learning packages in R; Summary 
505 8 |a Chapter 2: Let's Help Machines LearnUnderstanding machine learning; Algorithms in machine learning; Perceptron; Families of algorithms; Supervised learning algorithms; Linear regression; K-Nearest Neighbors (KNN); Unsupervised learning algorithms; Apriori algorithm; K-Means; Summary; Chapter 3: Predicting Customer Shopping Trends with Market Basket Analysis; Detecting and predicting trends; Market basket analysis; What does market basket analysis actually mean?; Core concepts and definitions; Techniques used for analysis; Making data driven decisions; Evaluating a product contingency matrix 
505 8 |a Getting the dataAnalyzing and visualizing the data; Global recommendations; Advanced contingency matrices; Frequent itemset generation; Getting started; Data retrieval and transformation; Building an itemset association matrix; Creating a frequent itemsets generation workflow; Detecting shopping trends; Association rule mining; Loading dependencies and data; Exploratory analysis; Detecting and predicting shopping trends; Visualizing association rules; Summary; Chapter 4: Building a Product Recommendation System; Understanding recommendation systems; Issues with recommendation systems 
505 8 |a Collaborative filtersCore concepts and definitions; The collaborative filtering algorithm; Predictions; Recommendations; Similarity; Building a recommender engine; Matrix factorization; Implementation; Result interpretation; Production ready recommender engines; Extract, transform, and analyze; Model preparation and prediction; Model evaluation; Summary; Chapter 5: Credit Risk Detection and Prediction -- Descriptive Analytics; Types of analytics; Our next challenge; What is credit risk?; Getting the data; Data preprocessing; Dealing with missing values; Datatype conversions 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 6 |a Apprentissage automatique. 
650 6 |a R (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Sarkar, Dipanjan,  |e author. 
776 0 8 |i Erscheint auch als:  |n Druck-Ausgabe  |t Bali, Raghav. R Machine Learning By Example 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1215154  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30554600 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4520645 
938 |a EBSCOhost  |b EBSC  |n 1215154 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34332733 
994 |a 92  |b IZTAP