Cargando…

Materials characterization using nondestructive evaluation methods /

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hübschen, Gerhard (Editor ), Altpeter, Iris (Editor ), Tschuncky, Ralf (Editor ), Herrmann, Hans-Georg (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Woodhead Publishing, an imprint of Elsevier, 2016.
Colección:Woodhead Publishing series in electronic and optical materials ; 88.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn945731751
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 160331s2016 mau ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d OPELS  |d CDX  |d IDEBK  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d U3W  |d D6H  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 945752080  |a 945874578 
020 |a 9780081000571  |q (electronic bk.) 
020 |a 008100057X  |q (electronic bk.) 
020 |z 9780081000403 
029 1 |a AU@  |b 000061156051 
029 1 |a CHBIS  |b 010796233 
029 1 |a CHVBK  |b 403940141 
029 1 |a DEBSZ  |b 482469951 
029 1 |a GBVCP  |b 879396229 
035 |a (OCoLC)945731751  |z (OCoLC)945752080  |z (OCoLC)945874578 
050 4 |a QD131 
072 7 |a TEC  |x 023000  |2 bisacsh 
082 0 4 |a 669.92  |2 23 
049 |a UAMI 
245 0 0 |a Materials characterization using nondestructive evaluation methods /  |c edited by Gerhard Hübscen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann. 
264 1 |a Cambridge, MA :  |b Woodhead Publishing, an imprint of Elsevier,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead publishing series in electronic and optical materials ;  |v 88 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed March 31, 2016). 
504 |a Includes bibliographical references and index. 
520 |a Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. 
505 0 |a Front Cover; Materials Characterization Using Nondestructive Evaluation (NDE) Methods#; Related titles; Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; 1 -- Atomic force microscopy (AFM) for materials characterization; 1.1 Introduction; 1.2 Comparison of AFM with other microscopy techniques; 1.3 Principles of AFM technique; 1.4 Construction and basic components of AFM; 1.5 Working modes of AFM; 1.5.1 Contact mode; 1.5.2 Noncontact mode; 1.5.3 Tapping mode 
505 8 |a 1.6 Application of AFM for material characterization1.6.1 Surface properties measurement; 1.6.2 AFM measurements for hardness and modulus measurements; 1.6.3 AFM measurements for damage characterizations; 1.6.4 AFM measurements for characterizations of surface treatment effects; 1.7 Conclusions; Acknowledgments; References; 2 -- Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization; 2.1 Introduction; 2.2 Why electron microscopy?; 2.2.1 Key advantages of imaging with electrons; 2.2.2 Key disadvantages of imaging with electrons 
505 8 |a 2.3 Types of microscopes2.4 Interaction of electrons with materials; 2.4.1 Elastic versus inelastic electron scattering; 2.4.2 Signals from the specimen; 2.5 What material features can we analyze using electron microscopy?; 2.5.1 Practical electron microscopy; 2.6 Scanning electron microscopy; 2.6.1 Key features of the SEM microscope; 2.6.2 Specimen preparation; 2.6.3 SEM detectors; 2.7 Key microstructural features analyzed by SEM; 2.7.1 Specimen shape; 2.7.2 Specimen composition; 2.7.3 Surface crystallography; 2.8 Transmission electron microscopy; 2.8.1 Key features of the TEM microscope 
505 8 |a 2.8.2 TEM specimen preparation2.9 TEM imaging modes; 2.10 TEM spectroscopy; 2.10.1 X-ray analysis in TEM (EDX); 2.10.2 Electron energy loss spectrometry; 2.11 Key applications of TEM; 2.12 Is electron microscopy a nondestructive technique?; 2.12.1 Specimen preparation; 2.12.2 Specimen changes during imaging; 2.12.3 Strategies for minimizing specimen damage; 2.13 Outlook for SEM and TEM; References; 3 -- X-ray microtomography for materials characterization; 3.1 Introduction; 3.2 Imaging physics; 3.2.1 X-ray microfocus tubes; 3.2.2 Interaction of hard X-rays with materials 
505 8 |a 3.2.2.1 X-ray attenuationPhoton absorption; Compton scattering; 3.2.2.2 Phase contrast imaging; 3.2.3 X-ray detectors and imaging devices: principles, features, and common systems; 3.3 Principles of microcomputed tomography; 3.4 Geometrical considerations and data acquisition; 3.5 System design (CT methods); 3.6 Image reconstruction; 3.7 Image quality; 3.8 Radiation exposure; 3.9 Examples of important and/or frequent applications for materials characterization; 3.10 Conclusions and future trends; 3.11 Further literature; References 
505 8 |a 4 -- X-ray diffraction (XRD) techniques for materials characterization 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Materials  |x Analysis. 
650 6 |a Matériaux  |x Analyse. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Metallurgy.  |2 bisacsh 
650 7 |a Materials  |x Analysis  |2 fast 
700 1 |a Hübschen, Gerhard,  |e editor. 
700 1 |a Altpeter, Iris,  |e editor. 
700 1 |a Tschuncky, Ralf,  |e editor. 
700 1 |a Herrmann, Hans-Georg,  |e editor. 
776 0 8 |i Print version:  |a Huebschen, Gerhard.  |t Materials Characterization Using Nondestructive Evaluation (NDE) Methods.  |d : Elsevier Science, ©2016  |z 9780081000403 
830 0 |a Woodhead Publishing series in electronic and optical materials ;  |v 88. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151261  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 34239337 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4458822 
938 |a EBSCOhost  |b EBSC  |n 1151261 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34239337 
938 |a YBP Library Services  |b YANK  |n 12908643 
994 |a 92  |b IZTAP