Cargando…

Groups of prime power order. Volume 5 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, I͡A. G., 1938-
Otros Autores: Janko, Zvonimir, 1932-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, ©2016.
Colección:De Gruyter expositions in mathematics ; 62.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • List of definitions and notations ; Preface ; 190 On p-groups containing a subgroup of maximal class and index p ; 191 p-groups G all of whose nonnormal subgroups contain G` in its normal closure; 192 p-groups with all subgroups isomorphic to quotient groups.
  • 193 Classification of p-groups all of whose proper subgroups are s-self-dual 194 p-groups all of whose maximal subgroups, except one, are s-self-dual ; 195 Nonabelian p-groups all of whose subgroups are q-self-dual ; 196 A p-group with absolutely regular normalizer of some subgroup.
  • 197 Minimal non-q-self-dual 2-groups 198 Nonmetacyclic p-groups with metacyclic centralizer of an element of order p ; 199 p-groups with minimal nonabelian closures of all nonnormal abelian subgroups.
  • 200 The nonexistence of p-groups G all of whose minimal nonabelian subgroups intersect Z(G) trivially 201 Subgroups of order pp and exponent p in p-groups with an irregular subgroup of maximal class and index> p ; 202 p-groups all of whoseA2-subgroups are metacyclic.
  • 203 Nonabelian p-groups G in which the center of each nonabelian subgroup is contained in Z(G) 204 Theorem of R. van der Waal on p-groups with cyclic derived subgroup, p> 2 ; 205 Maximal subgroups ofA2-groups.