|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn945718242 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160123s2016 gw ob 001 0 eng d |
040 |
|
|
|a YDXCP
|b eng
|e pn
|c YDXCP
|d OCLCO
|d EBLCP
|d OCLCF
|d IDEBK
|d MERUC
|d DEBBG
|d YDX
|d N$T
|d UIU
|d DEBSZ
|d OCLCQ
|d SNK
|d DKU
|d AUW
|d INTCL
|d BTN
|d IGB
|d D6H
|d VTS
|d AGLDB
|d G3B
|d S8J
|d S9I
|d STF
|d M8D
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 933442959
|a 935254304
|a 936867664
|a 961244081
|a 961811254
|a 964608953
|a 992855540
|a 1023499114
|a 1264773763
|
020 |
|
|
|a 9783110281477
|q (electronic bk.)
|
020 |
|
|
|a 3110281473
|
020 |
|
|
|a 9783110281484
|
020 |
|
|
|a 3110281481
|
020 |
|
|
|a 9783110381559
|
020 |
|
|
|a 3110381559
|
020 |
|
|
|z 3110381559
|
020 |
|
|
|z 3110281481
|
029 |
1 |
|
|a AU@
|b 000057390717
|
029 |
1 |
|
|a AU@
|b 000061994074
|
029 |
1 |
|
|a CHBIS
|b 011058004
|
029 |
1 |
|
|a DEBBG
|b BV043491871
|
029 |
1 |
|
|a DEBSZ
|b 478007787
|
029 |
1 |
|
|a GBVCP
|b 860383237
|
035 |
|
|
|a (OCoLC)945718242
|z (OCoLC)933442959
|z (OCoLC)935254304
|z (OCoLC)936867664
|z (OCoLC)961244081
|z (OCoLC)961811254
|z (OCoLC)964608953
|z (OCoLC)992855540
|z (OCoLC)1023499114
|z (OCoLC)1264773763
|
037 |
|
|
|a 881769
|b MIL
|
050 |
|
4 |
|a QA177
|b .B469 2008 vol. 4
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Berkovich, I͡A. G.,
|d 1938-
|
245 |
1 |
0 |
|a Groups of prime power order.
|n Volume 4 /
|c Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others].
|
260 |
|
|
|a Berlin ;
|a Boston :
|b De Gruyter,
|c ©2016.
|
300 |
|
|
|a 1 online resource (476 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter Expositions in Mathematics ;
|v volume 61
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on March 30, 2016).
|
500 |
|
|
|a 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian
|
505 |
0 |
|
|a Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes
|
505 |
8 |
|
|a 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups
|
505 |
8 |
|
|a 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup
|
505 |
8 |
|
|a 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup
|
505 |
8 |
|
|a 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group
|
520 |
|
|
|a This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Finite groups.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
6 |
|a Groupes finis.
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Finite groups
|2 fast
|
650 |
|
7 |
|a Group theory
|2 fast
|
700 |
1 |
|
|a Janko, Zvonimir,
|d 1932-
|
776 |
0 |
8 |
|i Print version:
|a Berkovich, Yakov G.
|t Groups of Prime Power Order 4 : Volume 4.
|d Berlin/Boston : De Gruyter, ©2015
|z 9783110281453
|
830 |
|
0 |
|a De Gruyter expositions in mathematics ;
|v 61.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4229725
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1131257
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis33316298
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10817660
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10817874
|
994 |
|
|
|a 92
|b IZTAP
|