Cargando…

Groups of prime power order. Volume 4 /

This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with tw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, I͡A. G., 1938-
Otros Autores: Janko, Zvonimir, 1932-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, ©2016.
Colección:De Gruyter expositions in mathematics ; 61.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn945718242
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 160123s2016 gw ob 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d EBLCP  |d OCLCF  |d IDEBK  |d MERUC  |d DEBBG  |d YDX  |d N$T  |d UIU  |d DEBSZ  |d OCLCQ  |d SNK  |d DKU  |d AUW  |d INTCL  |d BTN  |d IGB  |d D6H  |d VTS  |d AGLDB  |d G3B  |d S8J  |d S9I  |d STF  |d M8D  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 933442959  |a 935254304  |a 936867664  |a 961244081  |a 961811254  |a 964608953  |a 992855540  |a 1023499114  |a 1264773763 
020 |a 9783110281477  |q (electronic bk.) 
020 |a 3110281473 
020 |a 9783110281484 
020 |a 3110281481 
020 |a 9783110381559 
020 |a 3110381559 
020 |z 3110381559 
020 |z 3110281481 
029 1 |a AU@  |b 000057390717 
029 1 |a AU@  |b 000061994074 
029 1 |a CHBIS  |b 011058004 
029 1 |a DEBBG  |b BV043491871 
029 1 |a DEBSZ  |b 478007787 
029 1 |a GBVCP  |b 860383237 
035 |a (OCoLC)945718242  |z (OCoLC)933442959  |z (OCoLC)935254304  |z (OCoLC)936867664  |z (OCoLC)961244081  |z (OCoLC)961811254  |z (OCoLC)964608953  |z (OCoLC)992855540  |z (OCoLC)1023499114  |z (OCoLC)1264773763 
037 |a 881769  |b MIL 
050 4 |a QA177  |b .B469 2008 vol. 4 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.23  |2 23 
049 |a UAMI 
100 1 |a Berkovich, I͡A. G.,  |d 1938- 
245 1 0 |a Groups of prime power order.  |n Volume 4 /  |c Yakov Berkovich and Zvonimir Janko ; edited by Victor P. Maslov [and 4 others]. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c ©2016. 
300 |a 1 online resource (476 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Expositions in Mathematics ;  |v volume 61 
504 |a Includes bibliographical references and indexes. 
588 0 |a Online resource; title from digital title page (viewed on March 30, 2016). 
500 |a 165 p-groups G all of whose subgroups containing ∅G) as a subgroup of index p are minimal nonabelian 
505 0 |a Content ; List of definitions and notations ; Preface ; 145 p-groups all of whose maximal subgroups, except one, have derived subgroup of order ≤ p; 146 p-groups all of whose maximal subgroups, except one, have cyclic derived subgroups ; 147 p-groups with exactly two sizes of conjugate classes 
505 8 |a 148 Maximal abelian and minimal nonabelian subgroups of some finite two-generator p-groups especially metacyclic 149 p-groups with many minimal nonabelian subgroups ; 150 The exponents of finite p-groups and their automorphism groups 
505 8 |a 151 p-groups all of whose nonabelian maximal subgroups have the largest possible center 152 p-central p-groups ; 153 Some generalizations of 2-central 2-groups ; 154 Metacyclic p-groups covered by minimal nonabelian subgroups ; 155 A new type of Thompson subgroup 
505 8 |a 156 Minimal number of generators of a p-group, p> 2 157 Some further properties of p-central p-groups ; 158 On extraspecial normal subgroups of p-groups ; 159 2-groups all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup; 160 p-groups, p> 2, all of whose cyclic subgroups A, B with A Â"B `"{1} generate an abelian subgroup 
505 8 |a 161 p-groups where all subgroups not contained in the Frattini subgroup are quasinormal 162 The centralizer equality subgroup in a p-group ; 163 Macdonald's theorem on p-groups all of whose proper subgroups are of class at most 2 ; 164 Partitions and Hp-subgroups of a p-group 
520 |a This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
700 1 |a Janko, Zvonimir,  |d 1932- 
776 0 8 |i Print version:  |a Berkovich, Yakov G.  |t Groups of Prime Power Order 4 : Volume 4.  |d Berlin/Boston : De Gruyter, ©2015  |z 9783110281453 
830 0 |a De Gruyter expositions in mathematics ;  |v 61. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1131257  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4229725 
938 |a EBSCOhost  |b EBSC  |n 1131257 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33316298 
938 |a YBP Library Services  |b YANK  |n 10817660 
938 |a YBP Library Services  |b YANK  |n 10817874 
994 |a 92  |b IZTAP