Cargando…

R data science essentials : learn the essence of data science and visualization using R in no time at all /

Learn the essence of data science and visualization using R in no time at allAbout This Book Become a pro at making stunning visualizations and dashboards quickly and without hassle For better decision making in business, apply the R programming language with the help of useful statistical technique...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Koushik, Raja B. (Autor), Ravindran, Sharan Kumar (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn936182971
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 160128s2016 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d IDEBK  |d YDXCP  |d OCLCF  |d COO  |d DEBSZ  |d DEBBG  |d OCLCQ  |d CEF  |d MQY  |d AGLDB  |d IGB  |d RDF  |d OCLCO  |d OCLCQ  |d QGK 
019 |a 935192326  |a 935642769  |a 1259125162 
020 |a 9781785286360  |q electronic bk. 
020 |a 1785286366  |q electronic bk. 
020 |z 9781785286544 
020 |z 1785286544 
020 |a 1785286544 
020 |a 9781785286544 
024 3 |a 9781785286544 
029 1 |a DEBSZ  |b 47387489X 
029 1 |a DEBBG  |b BV043968761 
029 1 |a DEBSZ  |b 485792710 
029 1 |a GBVCP  |b 882751999 
029 1 |a AU@  |b 000057077747 
029 1 |a AU@  |b 000066233002 
035 |a (OCoLC)936182971  |z (OCoLC)935192326  |z (OCoLC)935642769  |z (OCoLC)1259125162 
037 |a CL0500000708  |b Safari Books Online 
050 4 |a QA276.45.R3 
072 7 |a COM  |x 051010  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Koushik, Raja B.,  |e author. 
245 1 0 |a R data science essentials :  |b learn the essence of data science and visualization using R in no time at all /  |c Raja B. Koushik, Sharan Kumar Ravindran. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed February 5, 2016) 
500 |a Includes index. 
520 8 |a Learn the essence of data science and visualization using R in no time at allAbout This Book Become a pro at making stunning visualizations and dashboards quickly and without hassle For better decision making in business, apply the R programming language with the help of useful statistical techniques. From seasoned authors comes a book that offers you a plethora of fast-paced techniques to detect and analyze data patternsWho This Book Is ForIf you are an aspiring data scientist or analyst who has a basic understanding of data science and has basic hands-on experience in R or any other analytics tool, then R Data Science Essentials is the book for you.What You Will Learn Perform data preprocessing and basic operations on data Implement visual and non-visual implementation data exploration techniques Mine patterns from data using affinity and sequential analysis Use different clustering algorithms and visualize them Implement logistic and linear regression and find out how to evaluate and improve the performance of an algorithm Extract patterns through visualization and build a forecasting algorithm Build a recommendation engine using different collaborative filtering algorithms Make a stunning visualization and dashboard using ggplot and R shinyIn DetailWith organizations increasingly embedding data science across their enterprise and with management becoming more data-driven it is an urgent requirement for analysts and managers to understand the key concept of data science. The data science concepts discussed in this book will help you make key decisions and solve the complex problems you will inevitably face in this new world.R Data Science Essentials will introduce you to various important concepts in the field of data science using R. We start by reading data from multiple sources, then move on to processing the data, extracting hidden patterns, building predictive and forecasting models, building a recommendation engine, and communicating to the user through stunning visualizations and dashboards.By the end of this book, you will have an understanding of some very important techniques in data science, be able to implement them using R, understand and interpret the outcomes, and know how they helps businesses make a decision.Style and approachThis easy-to-follow guide contains hands-on examples of the concepts of data science using R. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with R; Reading data from different sources; Reading data from a database; Data types in R; Variable data types; Data preprocessing techniques; Performing data operations; Arithmetic operations on the data; String operations on the data; Aggregation operations on the data; Mean; Median; Sum; Maximum and minimum; Standard deviation; Control structures in R; Control structures -- if and else; Control structures -- for; Control structures -- while 
505 8 |a Control structures -- repeat and breakControl structures -- next and return; Bringing data to a usable format; Summary; Chapter 2: Exploratory Data Analysis; The Titanic dataset; Descriptive statistics; Box plot; Exercise; Inferential statistics; Univariate analysis; Bivariate analysis; Multivariate analysis; Cross-tabulation analysis; Graphical analysis; Summary; Chapter 3: Pattern Discovery; Transactional datasets; Using the built-in dataset; Building the dataset; Apriori analysis; Support, confidence, and lift; Support; Confidence; Lift; Generating filtering rules; Plotting; Dataset; Rules 
505 8 |a Sequential datasetApriori sequence analysis; Understanding the results; Reference; Business cases; Summary; Chapter 4: Segmentation Using Clustering; Datasets; Reading and formatting the dataset in R; Centroid-based clustering and an ideal number of clusters; Implementation using K-means; Visualizing the clusters; Connectivity-based clustering; Visualizing the connectivity; Business use cases; Summary; Chapter 5: Developing Regression Models; Datasets; Sampling the dataset; Logistic regression; Evaluating logistic regression; Linear regression; Evaluating linear regression 
505 8 |a Methods to improve the accuracyEnsemble models; Replacing NA with mean or median; Removing the highly correlated values; Removing outliers; Summary; Chapter 6: Time Series Forecasting; Datasets; Extracting patterns; Forecasting using ARIMA; Forecasting using Holt-Winters; Methods to improve accuracy; Summary; Chapter 7: Recommendation Engine; Dataset and transformation; Recommendations using user-based CF; Recommendations using item-based CF; Challenges and enhancements; Summary; Chapter 8: Communicating Data Analysis; Dataset; Plotting using the googleVis package 
505 8 |a Creating an interactive dashboard using ShinySummary; Index 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 0 |a Information visualization. 
650 6 |a R (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 6 |a Visualisation de l'information. 
650 7 |a COMPUTERS / Programming Languages / General  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Ravindran, Sharan Kumar,  |e author. 
776 |z 1-78528-654-4 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1151007  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1151007 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33542590 
938 |a YBP Library Services  |b YANK  |n 12809405 
994 |a 92  |b IZTAP