|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn934451642 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160111s2016 nyua ob 001 0 eng d |
040 |
|
|
|a CAMBR
|b eng
|e rda
|e pn
|c CAMBR
|d YDXCP
|d N$T
|d IDEBK
|d OCLCQ
|d EBLCP
|d YDX
|d IDB
|d OCLCQ
|d CDN
|d OCLCQ
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 957740052
|a 958084253
|
020 |
|
|
|a 9781316562857
|q (electronic bk.)
|
020 |
|
|
|a 1316562859
|q (electronic bk.)
|
020 |
|
|
|a 9781316675304
|q (electronic bk.)
|
020 |
|
|
|a 1316675300
|q (electronic bk.)
|
020 |
|
|
|z 9781107148055
|
020 |
|
|
|z 1107148057
|
029 |
1 |
|
|a AU@
|b 000060915223
|
029 |
1 |
|
|a DEBBG
|b BV043893013
|
035 |
|
|
|a (OCoLC)934451642
|z (OCoLC)957740052
|z (OCoLC)958084253
|
050 |
|
4 |
|a QC174.17.P68
|b F73 2016eb
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 055000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.13/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Franz, Uwe,
|e author.
|
245 |
1 |
0 |
|a Noncommutative mathematics for quantum systems /
|c Uwe Franz, Adam Skalski.
|
264 |
|
1 |
|a New York :
|b Cambridge University Press,
|c [2016]
|
300 |
|
|
|a 1 online resource (xviii, 180 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge - IISc series
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "Discusses two current areas of noncommutative mathematics, quantum probability and quantum dynamical systems"--
|c Provided by publisher
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; Preface; Conference photo; Introduction; 1 Independence and Lévy Processes in Quantum Probability; 1.1 Introduction; 1.2 What is Quantum Probability?; 1.2.1 Distinguishing features of classical and quantum probability; 1.2.2 Dictionary 'Classical ₄!Quantum'; 1.3 Why do we Need Quantum Probability?; 1.3.1 Mermin's version of the EPR experiment; 1.3.2 Gleason's theorem; 1.3.3 The Kochen-Specker theorem; 1.4 Infinite Divisibility in Classical Probability; 1.4.1 Stochastic independence; 1.4.2 Convolution.
|
505 |
8 |
|
|a 1.4.3 Infinite divisibility, continuous convolution semigroups, and Lévy processes1.4.4 The De Finetti-Lévy-Khintchine formula on (R+, +); 1.4.5 Lévy-Khintchine formulae on cones; 1.4.6 The Lévy-Khintchine formula on (Rd, +); 1.4.7 The Markov semigroup of a Lévy process; 1.4.8 Hunt's formula; 1.5 Lévy Processes on Involutive Bialgebras.
|
505 |
8 |
|
|a 1.5.1 Definition of Lévy processes on involutive bialgebras 1.5.2 The generating functional of a Lévy process ; 1.5.3 The Schürmann triple of a Lévy process; 1.5.4 Examples.
|
505 |
8 |
|
|a 1.6 Lévy Processes on Compact Quantum Groups and their Markov Semigroups 1.6.1 Compact quantum groups; 1.6.2 Translation invariant Markov semigroups; 1.7 Independences and Convolutions in Noncommutative Probability; 1.7.1 Nevanlinna theory and Cauchy-Stieltjes transforms; 1.7.2 Free convolutions; 1.7.3 A useful Lemma; 1.7.4 Monotone convolutions.
|
505 |
8 |
|
|a 1.7.5 Boolean convolutions1.8 The Five Universal Independences; 1.8.1 Algebraic probability spaces; 1.8.2 Classical stochastic independence and the product of probability spaces; 1.8.3 Products of algebraic probability spaces; 1.8.4 Classification of the universal independences; 1.9 Lévy Processes on Dual Groups ; 1.9.1 Dual groups.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
0 |
|a Potential theory (Mathematics)
|
650 |
|
2 |
|a Probability
|
650 |
|
2 |
|a Quantum Theory
|
650 |
|
6 |
|a Probabilités.
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
6 |
|a Théorie du potentiel.
|
650 |
|
7 |
|a probability.
|2 aat
|
650 |
|
7 |
|a SCIENCE
|x Energy.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Potential theory (Mathematics)
|2 fast
|0 (OCoLC)fst01073489
|
650 |
|
7 |
|a Probabilities.
|2 fast
|0 (OCoLC)fst01077737
|
650 |
|
7 |
|a Quantum theory.
|2 fast
|0 (OCoLC)fst01085128
|
700 |
1 |
|
|a Skalski, Adam,
|d 1978-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Franz, Uwe.
|t Noncommutative mathematics for quantum systems
|z 9781107148055
|w (DLC) 2015032903
|w (OCoLC)919316281
|
830 |
|
0 |
|a Cambridge - IISc series.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1159408
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31426967
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH31318669
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4354831
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1159408
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis35455500
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12775024
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13115410
|
994 |
|
|
|a 92
|b IZTAP
|