Recent progress in the theory of the Euler and Navier-Stokes equations /
The rigorous mathematical theory of the Navier-Stokes and Euler equations has been a focus of intense activity in recent years. This volume, the product of a workshop in Venice in 2013, consolidates, surveys and further advances the study of these canonical equations. It consists of a number of revi...
| Clasificación: | Libro Electrónico | 
|---|---|
| Otros Autores: | , , , | 
| Formato: | Electrónico eBook | 
| Idioma: | Inglés | 
| Publicado: | 
      Cambridge :
        
      Cambridge University Press,    
    
      2016.
     | 
| Colección: | London Mathematical Society lecture note series ;
              no. 430.             | 
| Temas: | |
| Acceso en línea: | Texto completo | 
                Tabla de Contenidos: 
            
                  - Classical solutions to the two-dimensional Euler equations and elliptic boundary value problems, an overview / H. Beirão da Veiga
 - Analyticity radii and the Navier-Stokes equations: recent results and applications / Z. Bradshaw, Z. Grujic, & I. Kukavica
 - On the motion of a pendulum with a cavity entirely filled with a viscous liquid / G.P. Galdi & G. Mazzone
 - Modal dependency and nonlinear depletion in the three-dimensional Navier-Stokes equations / J.D. Gibbon
 - Boussinesq equations with zero viscosity or zero diffusivity: a review / W. Hu, I. Kukavica, F. Wang, & M. Ziane
 - Global regularity versus finite-time singularities: some paradigms on the effect of boundary conditions and certain perturbations / A. Larios & E.S. Titi
 - Parabolic Morrey spaces and mild solutions of the Navier-Stokes equations: an interesting answer through a silly method to a stupid question / P.G. Lemarié-Rieusset
 - Well-posedness for the diffusive 3D Burgers equations with initial data in H1/2 / B.C. Pooley & J.C. Robinson
 - On the Fursikov approach to the moment problem for the three-dimensional Navier-Stokes equations / J.C. Robinson & A. Vidal-López
 - Some probabilistic topics in the Navier-Stokes equations / M. Romito.
 


