Corrosion control in the oil and gas industry /
The effect of corrosion in the oil industry leads to the failure of parts. This failure results in shutting down the plant to clean the facility. The annual cost of corrosion to the oil and gas industry in the United States alone is estimated at 27 billion (According to NACE International)-leading s...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Burlington :
Elsevier Science,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine-generated contents note: 1.1. Introduction
- 1.2. Energy from hydrocarbons
- 1.3. What are hydrocarbons?
- 1.3.1. Alkanes (Paraffins)
- 1.3.2. Cycloalkanes (Naphthenes)
- 1.3.3. Aromatic hydrocarbons
- 1.4. Hydrocarbon sources
- 1.4.1. Conventional
- 1.4.2. Unconventional
- 1.4.3. Renewables
- 1.5. History of the oil and gas industry
- 1.6. Regulations
- 1.7. The significance and impact of corrosion in the oil and gas industry
- 1.7.1. Production sector
- 1.7.2. Transportation
- pipeline sector
- 1.7.3. Transportation
- other modes sector
- 1.7.4. Storage tank sector
- 1.7.5. Refinery sector
- 1.7.6. Distribution sector
- 1.7.7. Special sector
- References
- 2.1. Introduction
- 2.2. Drill pipe
- 2.3. Casing
- 2.4. Downhole tubular
- 2.5. Acidizing pipe
- 2.6. Water generators and injectors
- 2.7. Gas generators (Teritiary recovery)
- 2.8. Open mining
- 2.9. In situ production
- 2.9.1. Cyclic steam stimulation (CSS)
- 2.9.2. Steam-assisted gravity drainage (SAGD)
- 2.9.3. Toe-to-heel air injection (THAI) or fireflooding (In situ combustion)
- 2.9.4. Cold heavy-oil production with sand (CHOPS)
- 2.9.5. Vapour extraction process (VAPEX)
- 2.10. Wellhead
- 2.11. Production pipelines
- 2.12. Heavy-crude oil pipelines
- 2.13. Hydrotransport pipelines
- 2.14. Gas dehydration facilities
- 2.14.1. Oil separation
- 2.14.2. Acid gas removal
- 2.14.3. Water removal
- 2.15. Oil separators
- 2.15.1. Oil-gas separator
- 2.15.2. Oil-water separator
- 2.15.3. Oil-solid separator
- 2.16. Recovery centres (Extraction plants)
- 2.17. Upgraders
- 2.18. Lease tanks
- 2.19. Waste water pipelines
- 2.20. Tailing pipelines
- 2.21. Transmission pipelines
- 2.21.1. Gas transmission pipelines
- 2.21.2. Oil transmission pipelines
- 2.22. Compressor stations
- 2.23. Pump stations
- 2.24. Pipeline accessories
- 2.25. Oil tankers
- 2.26. Liquid natural gas (LNG) transportation
- 2.27. Transportation by railcars
- 2.28. Transportation by trucks
- 2.29. Gas storage
- 2.30. Oil storage tanks
- 2.31. Refineries
- 2.31.1. Desalter unit
- 2.31.2. Atmospheric distillation unit (ADU)
- 2.31.3. Vacuum distillation unit (VDU)
- 2.31.4. Hydrotreating unit
- 2.31.5. Catalytic cracking unit (CCU)
- 2.31.6. Thermal cracking unit (TCU)
- 2.31.7. Hydrocracking unit (HCU)
- 2.31.8. Steam cracking unit (SCU)
- 2.31.9. Mercaptan oxidation unit (Merox)
- 2.31.10. Catalytic reforming unit (CRU)
- 2.31.11. Visbreaker unit
- 2.31.12. Coker
- 2.31.13. Gas plants
- 2.31.14. Alkylation unit
- 2.31.15. Isomerization unit
- 2.31.16. Gas-treating unit
- 2.31.17. Water stripper
- 2.31.18. Claus sulphur plant
- 2.31.19. Heat exchangers
- 2.31.20. Cooling towers
- 2.31.21. Solvent extraction unit
- 2.31.22. Steam reforming unit
- 2.31.23. Methyl tertiary butyl ether (MTBE) unit
- 2.31.24. Polymerization unit
- 2.31.25. Hydrogen plant
- 2.31.26. Ammonia plant
- 2.31.27. Methanol plant
- 2.31.28. Other units
- 2.32. Product pipelines
- 2.33. Terminals
- 2.34. City gate and local distribution centres
- 2.35. Compressed natural gas (CNG)
- 2.36. Diluent pipelines
- 2.37. High vapour pressure pipelines
- 2.38. CO2 pipelines
- 2.39. Hydrogen pipelines
- 2.40. Ammonia pipelines
- 2.41. Biofuel infrastructure
- 2.41.1. Bioethanol
- 2.41.2. Biodiesel
- Bibliography
- References
- 3.1. Introduction
- 3.2. Properties of metals and alloys
- 3.2.1. Mechanical properties
- 3.2.2. Phase diagram
- 3.2.3. Metallography
- 3.3. Types of metals and alloys
- 3.3.1. Carbon steels
- 3.3.2. Cast irons
- 3.3.3. Alloy steels
- 3.3.4. Copper alloys
- 3.3.5. Stainless steels
- 3.3.6. Nickel alloys
- 3.3.7. Titanium alloys
- 3.3.8. Corrosion-resistant alloys
- 3.4. Classification of metals and alloys
- 3.4.1. AISI
- 3.4.2. API
- 3.4.3. ASTM
- 3.4.4. ASME
- 3.4.5. UNS
- 3.5. Non-metals
- 3.5.1. Plastics
- 3.5.2. Concrete
- 3.5.3. Cement
- References
- 4.1. Introduction
- 4.2. Flow
- 4.2.1. Pressure drop
- 4.2.2. Flow regimes
- 4.2.3. Water accumulation
- 4.2.4. Effect of flow on corrosion
- 4.3. Oil phase
- 4.3.1. Chemical and physical constituents
- 4.3.2. Emulsion type
- 4.3.3. Wettability
- 4.3.4. Partition of chemicals between oil and water phases
- 4.4. Water (Brine or Aqueous) phase
- 4.4.1. Effect of anions
- 4.4.2. Effect of cations
- 4.4.3. The combined effect of anions and cations
- 4.5. CO2
- 4.5.1. Effect of temperature
- 4.5.2. Effect of velocity
- 4.5.3. Effect of microstructure
- 4.5.4. Effect of pH
- 4.5.5. Effect of H2S
- 4.6. H2S
- 4.6.1. Effect of temperature
- 4.6.2. Effect of velocity
- 4.6.3. Effect of microstructure
- 4.6.4. Effect of pH
- 4.6.5. Effect of CO2
- 4.7. O2
- 4.7.1. Effect of temperature
- 4.7.2. Effect of velocity
- 4.7.3. Effect of microstructure
- 4.7.4. Effect of pH
- 4.8. Sand and solids
- 4.9. Microorganisms
- 4.10. Pressure
- 4.11. Temperature
- 4.12. pH
- 4.13. Organic acids
- 4.13.1. Aliphatic acids
- 4.13.2. Naphthenic acids
- 4.14. Mercury
- References
- 5.1. Introduction
- 5.2. Electrochemical nature of corrosion
- 5.3. General corrosion
- 5.4. Galvanic corrosion
- 5.5. Pitting corrosion
- 5.6. Intergranular corrosion
- 5.7. Selective leaching (Dealloying)
- 5.8. Deposition corrosion
- 5.9. Crevice corrosion
- 5.10. Cavitation-corrosion
- 5.11. Mechanical forces
- 5.12. Fretting corrosion
- 5.13. Underdeposit corrosion
- 5.14. Microbiologically-influenced corrosion
- 5.14.1. Classical mechanism
- 5.14.2. Modern mechanism
- 5.15. High-temperature corrosion
- 5.15.1. Gaseous environments
- 5.15.2. Liquid (Molten) environments
- 5.16. Corrosion fatigue
- 5.17. Stress-corrosion cracking (SCC)
- 5.18. The hydrogen effect
- 5.18.1. Hydrogen blistering (HB)
- 5.18.2. Hydrogen-induced cracking (HIC)
- 5.18.3. Hydrogen embrittlement (HE)
- 5.18.4. Sulphide stress-cracking (SSC)
- 5.18.5. High-temperature hydrogen-induced cracking (HTHIC)
- 5.18.6. Hydrogen-induced disbondment (HID)
- 5.18.7. Hydrogen grooving
- 5.19. Liquid metal-cracking (LMC) or liquid metal embrittlement (LME)
- 5.20. Corrosion under protective coating and corrosion under insulation (CUT)
- 5.21. Stray current corrosion
- 5.22. Telluric current corrosion
- 5.23. Alternating-current (AC) corrosion
- 5.24. Top-of-the-line corrosion (TLC)
- Bibliography
- References
- 6.1. Introduction
- 6.2. Hydrogen effects
- 6.2.1. Susceptibility of the material
- 6.2.2. Severity of the environment
- 6.3. General corrosion of carbon steel
- 6.3.1. The de Waard-Milliams models
- 6.3.2. The Srinivasan model
- 6.3.3. The Crolet model
- 6.3.4. The Nesic model
- 6.3.5. The Mishra model
- 6.3.6. The Dayalan model
- 6.3.7. The Anderko model
- 6.3.8. Oddo model
- 6.3.9. Pots model
- 6.3.10. Garber model
- 6.4. Pitting corrosion of CRAs
- 6.4.1. PREN
- 6.4.2. Laboratory evaluation
- 6.4.3. Electrochemical models
- 6.5. Localized pitting corrosion of carbon steel
- 6.5.1. The Papavinasam model
- 6.6. Erosion-corrosion
- 6.6.1. The Zhou model
- 6.6.2. The Nesic model
- 6.6.3. The Shadley model
- 6.7. Microbiologically-influenced corrosion
- 6.7.1. The Checkworks model
- 6.7.2. The union electric model
- 6.7.3. The Lutey model
- 6.7.4. The Pots model
- 6.7.5. The Maxwell model
- 6.7.6. The Sooknah model
- 6.8. Scaling
- 6.8.1. The Langelier saturation index (LSI)
- 6.8.2. The Ryznar stability index (RSI)
- 6.8.3. Other indices
- 6.9. High-temperature corrosion
- 6.10. Top-of-the-line corrosion (TLC)
- 6.10.1. The DeWaard model
- 6.10.2. The Pots model
- 6.10.3. The Gunaltum model
- 6.10.4. The Nyborg model
- References
- 7.1. Introduction
- 7.2. Pigging
- 7.2.1. Sphere pigs
- 7.2.2. Foam pigs
- 7.2.3. Cast pigs
- 7.2.4. Mandrel pigs
- 7.2.5. Brush pigs
- 7.2.6. Plow-blade pigs
- 7.2.7. Bidirectional pigs
- 7.2.8. Pin-wheel pigs
- 7.2.9. Multi-diameter pigs
- -- 7.2.10. Bypass pigs
- 7.2.11. Gel pigs
- 7.2.12. Special pigs
- 7.3. Drying
- 7.3.1. Injection of glycol or methanol
- 7.3.2. Air drying
- 7.3.3. Vacuum drying
- 7.3.4. Purging with nitrogen
- 7.4. Corrosion inhibitors
- 7.4.1. Selection of corrosion inhibitors
- 7.4.2. Application of corrosion inhibitors
- 7.4.3. Volume of corrosion inhibitor
- 7.4.4. Inhibitor availability
- 7.4.5. Other types of inhibitors
- 7.5. Biocides
- 7.5.1. Types
- 7.5.2. Selection
- 7.5.3. Application
- 7.6. Scale inhibitors
- 7.7. Wax and asphaltene inhibitors
- 7.8. Hydrate inhibitors
- 7.9. Internal coatings and linings
- 7.9.1. Polymeric liners
- 7.9.2. Clad materials
- 7.9.3. Refractive liners
- 7.10. Cathodic protection
- 7.11. Process optimization
- 7.11.1. pH control
- 7.11.2. Oxygen control
- 7.11.3. Bacterial control
- References
- 8.1. Introduction
- 8.2. Laboratory measurement
- 8.2.1. Hydrogen effects
- 8.2.2. General and localized corrosion
- 8.2.3. Mechanical forces
- 8.2.4. Microbiologically-influenced corrosion (MIC)
- 8.2.5. Scaling
- 8.2.6. High-temperature corrosion.
- Note continued: 8.2.7. Crevice corrosion
- 8.2.8. Intergranular corrosion
- 8.3. Field monitoring
- 8.3.1. Mass loss
- 8.3.2. Electrical resistance (ER) probe
- 8.3.3. Polarization resistance
- 8.3.4. Electrochemical noise
- 8.3.5. Electrochemical impedance spectroscopy (EIS)
- 8.3.6. Potentiodynamic polarization
- 8.3.7. Galvanic couples
- 8.3.8. Multi-electrode technique
- 8.3.9. Ultrasonic
- 8.3.10. Magnetic flux leakage (MFL)
- 8.3.11. Electromagnetic
- Eddy current
- 8.3.12. Electromagnetic
- remote field technique (RFT)
- 8.3.13. Radiography
- 8.3.14. Electrical field mapping (EFM)
- 8.3.15. Hydrogen probe
- 8.3.16. Corrosion potential (Ec0)
- 8.3.17. MIC monitoring techniques
- 8.3.18. Residual corrosion inhibitors
- 8.4. Field inspection
- 8.4.1. Physical inspection
- 8.4.2. Boroscopy
- 8.4.3. Fibrescopy
- 8.4.4. Liquid penetrant inspection
- 8.4.5. Magnetic particle inspection (MPI)
- 8.4.6. Thermography
- 8.4.7. Inline inspection (ILI)
- magnetic flux leakage (MFL)
- 8.4.8. Inline inspection
- ultrasonic (ILI-UT)
- 8.4.9. Other inline inspection tools
- 8.4.10. Reliability of corrosion data
- References
- 9.1. Introduction
- 9.2. Coatings
- 9.2.1. Polymeric coatings
- 9.2.2. Girth weld coatings
- 9.2.3. Repair coatings
- 9.2.4. Insulators
- 9.2.5. Metallic (thermal spray) coatings
- 9.2.6. Concrete coatings
- 9.3. Cathodic protection
- 9.3.1. Principle
- 9.3.2. Amount of current
- 9.3.3. Current source
- 9.3.4. Potential criteria
- 9.3.5. Applicability of cathodic protection
- 9.3.6. Factors influencing the effectiveness of cathodic protection
- 9.3.7. Stray currents
- 9.3.8. Side effects of cathodic protection
- 9.3.9. Materials and accessories
- References
- 10.1. Introduction
- 10.2. Modelling corrosion control
- 10.2.1. Modes of failure of external polymeric coatings
- 10.2.2. Laboratory methodologies
- 10.2.3. Modelling using laboratory data
- 10.2.4. Modelling using field operating conditions
- 10.2.5. Modelling using above-ground surveys
- 10.2.6. Modelling using below-ground measurements
- 10.2.7. Modelling the effect of joint coatings
- 10.2.8. Modelling the effect of insulators
- 10.2.9. Modelling the effect of metallic coatings
- 10.2.10. Modelling the effect of concrete coatings
- 10.3. Modelling corrosion
- 10.3.1. Modelling localized pitting corrosion
- 10.3.2. Modelling stress corrosion cracking
- 10.3.3. AC corrosion
- References
- 11.1. Introduction
- 11.2. Holiday detection
- 11.3. Above-ground monitoring techniques
- 11.3.1. Close interval survey (CIS)
- 11.3.2. Direct-current voltage gradient technique (DCVG)
- 11.3.3. Cathodic protection current requirement technique (CPCR)
- 11.3.4. Coating conductance technique (CC)
- 11.3.5. Alternating-current voltage gradient technique (ACVG)
- 11.3.6. Pearson survey (PS)
- 11.3.7. Electromagnetic current attenuation (ECAT)
- 11.3.8. Transwave system technique (TS)
- 11.3.9. Electrochemical impedence spectroscopy (EIS)
- 11.3.10. Infrared camera
- 11.3.11. Cautions in using above-ground monitoring techniques
- 11.4. Remote monitoring
- 11.5. In-line inspection
- 11.5.1. Metal loss tools
- 11.5.2. Crack detection tools
- 11.5.3. Other tools
- 11.6. Hydrostatic testing
- 11.7. Below-ground inspection
- 11.7.1. Soil resistivity
- 11.7.2. Visual inspection
- 11.7.3. Moisture content
- 11.7.4. pH
- 11.7.5. Chemical analysis
- 11.7.6. Microbial analysis
- 11.7.7. Corrosion characterization
- References
- 12.1. Introduction
- 12.2. Types of measurement
- 12.2.1. Offline measurement
- 12.2.2. Online measurement
- 12.3. Measured properties
- 12.3.1. Physical properties of materials
- 12.3.2. Chemical properties of materials
- 12.3.3. Volume of oil
- 12.3.4. Volume of gas
- 12.3.5. Physical properties of oil
- 12.3.6. Physical properties of gas
- 12.3.7. Physical properties of water
- 12.3.8. Flow
- 12.3.9. Pressure
- 12.3.10. Temperature
- 12.3.11. Chemical properties of oil
- 12.3.12. Chemical properties of gas
- 12.3.13. Chemical properties of water
- 12.3.14. Sand measurement
- 12.3.15. Fouling
- 12.3.16. Soil properties
- 12.3.17. Environmental properties
- 12.4. Precautions in using measured data for corrosion control
- References
- 13.1. Introduction
- 13.2. Equipment
- 13.2.1. Types of maintenance
- 13.2.2. Stages for implementation of maintenance
- 13.2.3. Activities during maintenance
- 13.2.4. Extent of maintenance
- 13.3. Workforce
- 13.3.1. Capacity
- 13.3.2. Education
- 13.3.3. Training
- 13.3.4. Experience
- 13.3.5. Knowledge
- 13.3.6. Quality
- 13.4. Data
- 13.4.1. Collection
- 13.4.2. Collection modes
- 13.4.3. Verification
- 13.4.4. Databases
- 13.4.5. Structure
- 13.4.6. Processing
- 13.4.7. Output and display
- 13.4.8. Storage
- 13.5. Communication
- 13.5.1. Self
- 13.5.2. Corrosion team
- 13.5.3. Integrity team
- 13.5.4. Subordinates
- 13.5.5. Senior management
- 13.5.6. Suppliers and service providers
- 13.5.7. Workers
- 13.5.8. Regulators
- 13.5.9. Peers
- 13.5.10. Stakeholders
- 13.5.11. General public
- 13.5.12. Media
- 13.5.13. Lawyers and court
- 13.5.14. General
- 13.6. Associated activities
- References
- 14.1. Introduction
- 14.2. Risk assessment
- 14.2.1. Occurrence
- 14.2.2. Likelihood
- 14.2.3. Consequence
- 14.2.4. Quantification
- 14.3. Risk management
- 14.3.1. Risk-cost relationship
- 14.3.2. Methods to estimate the cost (Economics)
- 14.3.3. Methods to optimize corrosion cost
- 14.4. Corrosion risks
- 14.5. Activities of corrosion management
- 14.5.1. Segmentation of infrastructure
- 14.5.2. Corrosion risks
- 14.5.3. Location of infrastructure
- 14.5.4. Quantification of risk
- 14.5.5. Life of infrastructure
- 14.5.6. Materials of construction
- 14.5.7. Corrosion allowance
- 14.5.8. Normal operating conditions
- 14.5.9. Upset conditions (Operating excursions) in the upstream segment
- 14.5.10. Upset conditions (Operating excursions)
- 14.5.11. Mechanisms of corrosion
- 14.5.12. Maximum corrosion rate (Internal surfaces)
- 14.5.13. Maximum corrosion rate (External surfaces)
- 14.5.14. Installation of proper accessories
- 14.5.15. Commissioning
- 14.5.16. Mitigation to control internal corrosion
- 14.5.17. Mitigation strategies to control internal corrosion
- 14.5.18. Mitigated internal corrosion rate
- target
- 14.5.19. Effectiveness of the internal corrosion mitigation strategy
- 14.5.20. Selection of mitigation strategies to control external corrosion
- 14.5.21. Implementation of mitigation strategies to control external corrosion
- 14.5.22. Mitigated external corrosion rate
- target
- 14.5.23. Effectiveness of external corrosion mitigation strategy
- 14.5.24. Internal corrosion monitoring techniques
- 14.5.25. Number of probes to monitor internal corrosion
- 14.5.26. Internal corrosion rates from monitoring techniques
- 14.5.27. Accuracy of internal corrosion monitoring techniques
- 14.5.28. External corrosion monitoring techniques
- 14.5.29. Number of probes to monitor external corrosion
- 14.5.30. External corrosion rate from monitoring technique
- 14.5.31. Accuracy of external corrosion monitoring techniques
- 14.5.32. Frequency of inspection
- 14.5.33. Percentage difference between internal corrosion rates from monitoring and inspection techniques
- 14.5.34. Percentage difference between external corrosion rates from monitoring and inspection techniques
- 14.5.35. Measurement data availability
- 14.5.36. Validity and utilization of measured data
- 14.5.37. Procedures for establishing the maintenance schedule
- 14.5.38. Maintenance activities
- 14.5.39. Internal corrosion rate after maintenance activities
- 14.5.40. Percentage difference between internal corrosion rate before and after maintenance activities
- 14.5.41. External corrosion rate after maintenance activities
- 14.5.42. Percentage difference between external corrosion rate before and after maintenance activity
- 14.5.43. Workforce
- -- capacity, skills, education, and training
- 14.5.44. Workforce
- experience, knowledge, and quality
- 14.5.45. Data management
- Data to database
- 14.5.46. Data management
- Data from database
- 14.5.47. Internal communication strategy
- 14.5.48. External communication strategy
- 14.5.49. Corrosion management review for continuous improvement
- 14.5.50. Failure frequency
- References.