Cargando…

Getting started with Python data analysis : learn to use powerful Python libraries for effective data processing and analysis /

Learn to use powerful Python libraries for effective data processing and analysisAbout This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vo. T. H, Phuong (Autor), Czygan, Martin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn930602036
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151130s2015 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d YDXCP  |d IDEBK  |d N$T  |d OCLCF  |d COO  |d OCLCQ  |d DEBSZ  |d EBLCP  |d VT2  |d OCLCQ  |d OCL  |d DEBBG  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d CEF  |d OCLCQ  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 928779463  |a 935249939 
020 |a 9781783988457 
020 |a 1783988452 
020 |a 1785285114 
020 |a 9781785285110 
020 |z 9781785285110 
024 3 |a 9781785285110 
029 1 |a CHNEW  |b 000893884 
029 1 |a CHVBK  |b 374530416 
029 1 |a DEBBG  |b BV043627536 
029 1 |a DEBBG  |b BV043968024 
029 1 |a DEBSZ  |b 461172941 
029 1 |a DEBSZ  |b 485785102 
029 1 |a GBVCP  |b 882847759 
035 |a (OCoLC)930602036  |z (OCoLC)928779463  |z (OCoLC)935249939 
037 |a CL0500000677  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Vo. T. H, Phuong,  |e author. 
245 1 0 |a Getting started with Python data analysis :  |b learn to use powerful Python libraries for effective data processing and analysis /  |c Phuong Vo. T.H, Martin Czygan. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from cover page (Safari, viewed November 23, 2015). 
500 |a Includes index. 
505 0 |a Cover; Preface; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Chapter 1: Introducing Data Analysis and Libraries; Data analysis and processing; An overview of the libraries in data analysis; Python libraries in data analysis; NumPy; Pandas; Matplotlib; PyMongo; The scikit-learn library; Summary; Chapter 2: NumPy Arrays and Vectorized Computation; NumPy arrays; Data types; Array creation; Indexing and slicing; Fancy indexing; Numerical operations on arrays; Array functions; Data processing using arrays; Loading and saving data; Saving an array. 
505 8 |a Loading an arrayLinear algebra with NumPy; NumPy random numbers; Summary; Chapter 3: Data Analysis with Pandas; An overview of the Pandas package; The Pandas data structure; Series; The DataFrame; The essential basic functionality; Reindexing and altering labels; Head and tail; Binary operations; Functional statistics; Function application; Sorting; Indexing and selecting data; Computational tools; Working with missing data; Advanced uses of Pandas for data analysis; Hierarchical indexing; The Panel data; Summary; Chapter 4: Data Visualization; The matplotlib API primer; Line properties. 
505 8 |a Figures and subplotsExploring plot types; Scatter plots; Bar plots; Contour plots; Histogram plots; Legends and annotations; Plotting functions with Pandas; Additional Python data visualization tools; Bokeh; MayaVi; Summary; Chapter 5: Time series; Time series primer; Working with date and time objects; Resampling time series; Downsampling time series data; Upsampling time series data; Time zone handling; Timedeltas; Time series plotting; Summary; Chapter 6: Interacting With Databases; Interacting with data in text format; Reading data from text format; Writing data to text format. 
505 8 |a Interacting with data in binary formatHDF5; Interacting with data in MongoDB; Interacting with data in Redis; The simple value; List; Set; Ordered set; Summary; Chapter 7: Data Analysis Application Examples; Data munging; Cleaning data; Filtering; Merging data; Reshaping data; Data aggregation; Grouping data; Summary; Chapter 8: Machine Learning Models with scikit-learn; An overview of machine learning models; The scikit-learn modules for different models; Data representation in scikit-learn; Supervised learning -- classification and regression. 
505 8 |a Unsupervised learning -- clustering and dimensionality reductionMeasuring prediction performance; Summary; Index. 
520 8 |a Learn to use powerful Python libraries for effective data processing and analysisAbout This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using PythonWho This Book Is ForIf you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python libraryIn DetailData analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approachThis is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Czygan, Martin,  |e author. 
776 0 8 |i Print version:  |a Phuong Vo. T.H, Martin Czygan.  |t Getting Started with Python Data Analysis.  |d Birmingham : Packt Publishing Ltd, ©2015  |z 9781785285110 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1091507  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4191202 
938 |a EBSCOhost  |b EBSC  |n 1091507 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis33109342 
938 |a YBP Library Services  |b YANK  |n 12687400 
994 |a 92  |b IZTAP