Cargando…

Sliding mode control (SMC) : theory, perspectives and industrial applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ellis, David T., 1969- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers, Inc., [2014]
Colección:Mechanical engineering theory and applications.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • SLIDING MODE CONTROL (SMC) THEORY, PERSPECTIVES AND INDUSTRIAL APPLICATIONS; SLIDING MODE CONTROL (SMC) THEORY, PERSPECTIVES AND INDUSTRIAL APPLICATIONS; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1 Governor Design for Hydropower Plants by Neural-Fuzzy Sliding Mode; Abstract; 1. Introduction; 2. Mode of the Hydro-Turbine Governing System; 2.1. Penstock and Hydro-Turbine; 2.2. Wicket Gate and Servomechanism; 2.3. Generator and Network; 3. Designed Controller of Hydro-Turbine Governing System; 3.1. Design of RBF Network-Based Sliding Mode Controller.
  • 3.2. Design of Fuzzy Sliding Mode Controller4. Numerical Simulation; A. Load Rejection; B. Robustness Testing; Conclusion; References; Chapter 2 Design of Integral Sliding Mode Controller for a Variable Speed Wind Turbine System; Abstract; 1. Introduction; 2. Wind Turbine Modeling; 2.1. Wind Model; 2.2. Aerodynamic; 2.3. Structural Dynamics; 2.4. Drive Train; 2.5. Pitch Actuator; 2.6. Generator Model; 3. Linear State Space Models of Wind Turbine; 4. Control Objective and Design of Integral Sliding Mode Control; 4.1. Control Objective; 4.2. Design of Integral Sliding Mode Control.
  • 4.2.1. Sliding Surface and Control Law Design4.2.2. Control Law Design; 4.2.3. Stability Analysis; 5. Simulation Result; A. Simulation Result with Mean Speed 16 M/S; B. Simulation Result with Mean Speed 17 M/S; C. Simulation Result with Mean Speed 18 M/S; Conclusion; References; Chapter 3 Frequency Stabilization of Hybrid Renewable Energy System by Sliding Mode; Abstract; 1. Introduction; 2. System Configuration; 2.1. AGC Dynamics; 2.2. Simplified Wind Turbine Model; 2.3. Model for Wind Turbine AGC; 2.4. Analysis about System Models; 3. Control Design.
  • 3.1. Design of Integral Sliding Mode Control3.2. Design of RBF Neural Networks; 3.3. Stability Analysis; 4. Simulation Result; Conclusion; References; Chapter 4 A Real Time Sliding Mode Control for a Standalone PV System; Abstract; Nomenclature; 1. Introduction; 2. MPPT Control; Step 2; Stability Demonstration; 2. Simulation and Experiment Results; 2.1. Simulation Results; 2.2. Experimental Result; Conclusion; References; Chapter 5 A Coordinated Control Strategy for a Group of Two-Wheeled Mobile Robots; Abstract; 1. Introduction; 2. Mathematical Model; 2.1. Modelling a Single Robot.
  • 2.2. Leader-Follower Formation Scheme3. Control Design and Stability Analysis; 4. Simulation Results; Conclusion; Appendix; References; Chapter 6 The Application of T-S Fuzzy Model in Coordinated Control of Multiple Robots System; Abstract; 1. Introduction; 2 Mathematical Model; 2.1. Modeling a Single Robot; 2.2. Leader-Follower Formation Scheme; 3. Design and Analysis; 3.1. Design of Fuzzy Compensator; 3.2. Design of Adaptive Integral Sliding Mode Controller; 4 Simulation Results; Conclusion; References; Chapter 7 Chattering-Free Sliding-Mode Control of Induction Motor Systems; Abstract.