|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn930024017 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151120s2014 nyu ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d EBLCP
|d IDB
|d AGLDB
|d OCLCQ
|d VTS
|d OCLCQ
|d STF
|d M8D
|d OCLCQ
|d AJS
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 948511118
|
020 |
|
|
|a 9781634831154
|q (electronic bk.)
|
020 |
|
|
|a 1634831152
|q (electronic bk.)
|
020 |
|
|
|z 9781634830911
|
020 |
|
|
|z 1634830911
|
029 |
1 |
|
|a DEBBG
|b BV043785108
|
029 |
1 |
|
|a DEBSZ
|b 472872907
|
029 |
1 |
|
|a AU@
|b 000057006672
|
035 |
|
|
|a (OCoLC)930024017
|z (OCoLC)948511118
|
050 |
|
4 |
|a TJ220.5
|b .S546 2014eb
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
082 |
0 |
4 |
|a 629.8
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Sliding mode control (SMC) :
|b theory, perspectives and industrial applications /
|c edited by David T. Ellis.
|
264 |
|
1 |
|a Hauppauge, New York :
|b Nova Science Publishers, Inc.,
|c [2014]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mechanical Engineering Theory and Applications
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a SLIDING MODE CONTROL (SMC) THEORY, PERSPECTIVES AND INDUSTRIAL APPLICATIONS; SLIDING MODE CONTROL (SMC) THEORY, PERSPECTIVES AND INDUSTRIAL APPLICATIONS; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter 1 Governor Design for Hydropower Plants by Neural-Fuzzy Sliding Mode; Abstract; 1. Introduction; 2. Mode of the Hydro-Turbine Governing System; 2.1. Penstock and Hydro-Turbine; 2.2. Wicket Gate and Servomechanism; 2.3. Generator and Network; 3. Designed Controller of Hydro-Turbine Governing System; 3.1. Design of RBF Network-Based Sliding Mode Controller.
|
505 |
8 |
|
|a 3.2. Design of Fuzzy Sliding Mode Controller4. Numerical Simulation; A. Load Rejection; B. Robustness Testing; Conclusion; References; Chapter 2 Design of Integral Sliding Mode Controller for a Variable Speed Wind Turbine System; Abstract; 1. Introduction; 2. Wind Turbine Modeling; 2.1. Wind Model; 2.2. Aerodynamic; 2.3. Structural Dynamics; 2.4. Drive Train; 2.5. Pitch Actuator; 2.6. Generator Model; 3. Linear State Space Models of Wind Turbine; 4. Control Objective and Design of Integral Sliding Mode Control; 4.1. Control Objective; 4.2. Design of Integral Sliding Mode Control.
|
505 |
8 |
|
|a 4.2.1. Sliding Surface and Control Law Design4.2.2. Control Law Design; 4.2.3. Stability Analysis; 5. Simulation Result; A. Simulation Result with Mean Speed 16 M/S; B. Simulation Result with Mean Speed 17 M/S; C. Simulation Result with Mean Speed 18 M/S; Conclusion; References; Chapter 3 Frequency Stabilization of Hybrid Renewable Energy System by Sliding Mode; Abstract; 1. Introduction; 2. System Configuration; 2.1. AGC Dynamics; 2.2. Simplified Wind Turbine Model; 2.3. Model for Wind Turbine AGC; 2.4. Analysis about System Models; 3. Control Design.
|
505 |
8 |
|
|a 3.1. Design of Integral Sliding Mode Control3.2. Design of RBF Neural Networks; 3.3. Stability Analysis; 4. Simulation Result; Conclusion; References; Chapter 4 A Real Time Sliding Mode Control for a Standalone PV System; Abstract; Nomenclature; 1. Introduction; 2. MPPT Control; Step 2; Stability Demonstration; 2. Simulation and Experiment Results; 2.1. Simulation Results; 2.2. Experimental Result; Conclusion; References; Chapter 5 A Coordinated Control Strategy for a Group of Two-Wheeled Mobile Robots; Abstract; 1. Introduction; 2. Mathematical Model; 2.1. Modelling a Single Robot.
|
505 |
8 |
|
|a 2.2. Leader-Follower Formation Scheme3. Control Design and Stability Analysis; 4. Simulation Results; Conclusion; Appendix; References; Chapter 6 The Application of T-S Fuzzy Model in Coordinated Control of Multiple Robots System; Abstract; 1. Introduction; 2 Mathematical Model; 2.1. Modeling a Single Robot; 2.2. Leader-Follower Formation Scheme; 3. Design and Analysis; 3.1. Design of Fuzzy Compensator; 3.2. Design of Adaptive Integral Sliding Mode Controller; 4 Simulation Results; Conclusion; References; Chapter 7 Chattering-Free Sliding-Mode Control of Induction Motor Systems; Abstract.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Sliding mode control.
|
650 |
|
6 |
|a Commande par modes glissants.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a Sliding mode control.
|2 fast
|0 (OCoLC)fst01120910
|
700 |
1 |
|
|a Ellis, David T.,
|d 1969-
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Sliding mode control (SMC)
|z 9781634830911
|w (DLC) 2015019757
|w (OCoLC)909329001
|
830 |
|
0 |
|a Mechanical engineering theory and applications.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1100225
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4188883
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1100225
|
994 |
|
|
|a 92
|b IZTAP
|