Cargando…

Learning Bayesian models with R : become an expert in Bayesian machine learning methods using R and apply them to solve real-world big data problems /

Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent adv...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Koduvely, Hari M. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn929988286
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151119s2015 enka ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d IDEBK  |d YDXCP  |d OCLCF  |d COO  |d EBLCP  |d VT2  |d DEBBG  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d NLE  |d CEF  |d OCLCQ  |d UKMGB  |d OCLCQ  |d WYU  |d UAB  |d AU@  |d OCLCQ  |d AJS  |d QGK  |d INARC  |d OCLCO  |d OCLCQ 
016 7 |a 018007067  |2 Uk 
019 |a 927973279  |a 935249996  |a 958465242  |a 1259134838 
020 |a 9781783987610  |q (electronic bk.) 
020 |a 1783987618  |q (electronic bk.) 
020 |z 9781783987603 
020 |z 178398760X 
029 1 |a AU@  |b 000057000028 
029 1 |a CHNEW  |b 000893830 
029 1 |a CHVBK  |b 374529876 
029 1 |a DEBBG  |b BV043627468 
029 1 |a DEBBG  |b BV043967955 
029 1 |a DEBSZ  |b 485784416 
029 1 |a GBVCP  |b 882847732 
029 1 |a UKMGB  |b 018007067 
029 1 |a ZWZ  |b 193217066 
035 |a (OCoLC)929988286  |z (OCoLC)927973279  |z (OCoLC)935249996  |z (OCoLC)958465242  |z (OCoLC)1259134838 
037 |a CL0500000674  |b Safari Books Online 
050 4 |a QA76.9.Q36 
072 7 |a COM  |x 051010  |2 bisacsh 
082 0 4 |a 005.13/3  |2 23 
049 |a UAMI 
100 1 |a Koduvely, Hari M.,  |e author. 
245 1 0 |a Learning Bayesian models with R :  |b become an expert in Bayesian machine learning methods using R and apply them to solve real-world big data problems /  |c Dr. Hari M. Koduvely. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from cover (Safari, viewed November 17, 2015). 
500 |a Includes index. 
504 |a Includes bibliographical references and index. 
520 |a Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to ... 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Quantitative research. 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Recherche quantitative. 
650 6 |a R (Langage de programmation) 
650 7 |a COMPUTERS  |x Programming Languages  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Quantitative research.  |2 fast  |0 (OCoLC)fst01742283 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
776 0 8 |i Print version:  |a Koduvely, Hari M.  |t Learning Bayesian Models with R.  |d Birmingham : Packt Publishing Ltd, ©2015  |z 9781783987603 
830 0 |a Community experience distilled. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781783987603/?ar  |z Texto completo 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1087967  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4191122 
938 |a EBSCOhost  |b EBSC  |n 1087967 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32996262 
938 |a Internet Archive  |b INAR  |n learningbayesian0000kodu 
938 |a YBP Library Services  |b YANK  |n 12684644 
994 |a 92  |b IZTAP