|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn928388317 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
151109t20162016nju ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d IDEBK
|d OSU
|d CDX
|d EBLCP
|d OCLCQ
|d COO
|d DEBSZ
|d OCLCQ
|d STF
|d AGLDB
|d OCLCQ
|d VTS
|d INT
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 933336400
|a 941700420
|a 966249862
|
020 |
|
|
|a 9789814590457
|q (electronic bk.)
|
020 |
|
|
|a 9814590452
|q (electronic bk.)
|
020 |
|
|
|z 9789814590440
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9814590444
|q (hardcover ;
|q alk. paper)
|
029 |
1 |
|
|a DEBBG
|b BV043785062
|
029 |
1 |
|
|a DEBSZ
|b 472872389
|
035 |
|
|
|a (OCoLC)928388317
|z (OCoLC)933336400
|z (OCoLC)941700420
|z (OCoLC)966249862
|
050 |
|
4 |
|a QA645
|b .D54 2015eb
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/6
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Differential geometry from singularity theory viewpoint /
|c by Shyuichi Izumiya (Hokkaido University, Japan) [and three others].
|
264 |
|
1 |
|a New Jersey :
|b World Scientific,
|c [2016]
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (xiii, 368 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a The case for the singularity theory approach -- Submaniifolds of the Euclidean space -- Singularities of germs of smooth mappings -- Contract between submanifolds of Rn -- Lagrangian and legendrian singularities -- Surfaces in the Euclidean 3-space -- Surfaces in the Euclidean 4-space -- Surfaces in the Euclidean 5-space -- Spacelike surfaces in the Minkowski space-time -- Global viewpoint.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a "Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces."--
|c Provided by publisher
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Surfaces
|x Areas and volumes.
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Curvature.
|
650 |
|
6 |
|a Surfaces (Mathématiques)
|x Aires et volumes.
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
6 |
|a Courbure.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Curvature.
|2 fast
|0 (OCoLC)fst00885436
|
650 |
|
7 |
|a Geometry, Differential.
|2 fast
|0 (OCoLC)fst00940919
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|0 (OCoLC)fst01119502
|
650 |
|
7 |
|a Surfaces
|x Areas and volumes.
|2 fast
|0 (OCoLC)fst01139258
|
700 |
1 |
|
|a Izumiya, Shyuichi,
|3 author.
|
776 |
0 |
8 |
|i Print version:
|t Differential geometry from singularity theory viewpoint.
|d New Jersey : World Scientific, 2015
|z 9789814590440
|w (DLC) 2015033184
|w (OCoLC)871511940
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1091519
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH29639218
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 33109326
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4394898
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1091519
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis33109326
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12681848
|
994 |
|
|
|a 92
|b IZTAP
|