|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn928387446 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151109s2015 nju o 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d OCLCO
|d EBLCP
|d OCLCO
|d OCLCQ
|d AGLDB
|d OCLCQ
|d NJR
|d OCLCQ
|d VNS
|d VTS
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 946309189
|
020 |
|
|
|a 9789814696357
|q (electronic bk.)
|
020 |
|
|
|a 9814696358
|q (electronic bk.)
|
020 |
|
|
|z 9789814696340
|
020 |
|
|
|z 981469634X
|
029 |
1 |
|
|a DEBBG
|b BV043785046
|
029 |
1 |
|
|a DEBSZ
|b 472872222
|
035 |
|
|
|a (OCoLC)928387446
|z (OCoLC)946309189
|
050 |
|
4 |
|a HD30.25
|b .M68 2015eb
|
072 |
|
7 |
|a BUS
|x 082000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 042000
|2 bisacsh
|
072 |
|
7 |
|a BUS
|x 085000
|2 bisacsh
|
082 |
0 |
4 |
|a 658.80072/7
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Quantitative modelling in marketing and management /
|c [edited] by Luiz Moutinho & Kun-Huang Huarng.
|
250 |
|
|
|a 2nd edition.
|
264 |
|
1 |
|a New Jersey :
|b World Scientific,
|c [2015]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a ReferencesChapter 2. Role of Structural Equation Modelling in Theory Testing and Development; 1. Introduction; 1.1. Structural equation modelling; 1.2. Terminology, rules, and conventions; 2. Structural Equation Modelling-Example; 2.1. Model identification; 2.2. Goodness-of-fit; 2.3. Model fit summary for the current example; 3. Model Estimation, Modification, and Interpretation; APPENDIX; References; Chapter 3. Partial Least Squares Path Modelling in Marketing and Management Research: An Annotated Application; 1. Introduction; 2. The PLSPM Algorithm.
|
505 |
0 |
|
|a Preface; Introduction; Part 1. Statistical Modelling; Chapter 1. A Review of the Major Multidimensional Scaling Models for the Analysis of Preference/Dominance Data in Marketing; 1. Introduction; 2. The Vector MDS Model; 2.1. The individual level vector MDS model; 2.2. The segment level or clusterwise vector MDS model; 3. The Unfolding MDS Model; 3.1. The individual level simple unfolding model; 3.2. The segment level or clusterwise multidimensional unfolding model; 4. A Marketing Application; 4.1. The vector model results; 4.2. The simple unfolding model results; 5. Discussion.
|
505 |
8 |
|
|a 3. PLSPM Properties: Strengths and Weaknesses4. Applied Example: The Role of Trust on Consumers Adoption of Online Banking; 4.1. The model; 4.2. Method; 4.3. Estimating a PLSPM. Step 1. Dealing with second order factors; 4.4. Estimating a PLSPM. Step 2. Validating the measurement (outer) model; 4.4.1. Reliability; 4.4.2. Convergent validity; 4.4.3. Discriminant validity; 4.5. Estimating a PLSPM. Step 3. Assessing the structural (inner) model; 4.5.1. R2 of dependent LV; 4.5.2. Predictive relevance; 4.6. Estimating a PLSPM. Step 4. Hypotheses testing; 5. Conclusion; References.
|
505 |
8 |
|
|a Chapter 4. Statistical Model Selection1. Introduction; 2. Some Example Analyses; 2.1. Tourism in Portugal; 2.2. Union membership; 3. Problem 1: Including Non-Important Variables in the Model; 3.1. Simulating data; 3.2. Models derived from simulated data; 4. Problem 2: Not Including Important Variables in the Model; 4.1. Modelling fuel consumption; 5. Conclusion; References; Part 2. Computer Modelling; Chapter 5. Artificial Neural Networks and Structural Equation Modelling: An Empirical Comparison to Evaluate Business Customer Loyalty; 1. Introduction; 2. Literature Review; 2.1. Loyalty.
|
505 |
8 |
|
|a 2.2. Loyalty determinants3. Research Method; 3.1. ANNs; 3.2. Structural equation modelling; 4. Comparisons; 4.1. Latent variables; 4.2. Causal interactions; 4.3. Learned associative properties; 4.4. Interconnectivity-neurons and indicators; 4.5. Predictability; 5. Results; 5.1. Results from the SEM; 5.2. Results from ANN; 6. Comparing Modelling Performance; 7. Comparing Results; 8. Conclusion; References; Chapter 6. The Application of NN to Management Problems; 1. Artificial Neural Networks in the Management Field; 2. Why use ANNs?; 3. ANNs; 3.1. Architecture of NNs; 3.2. Learning algorithms.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Management
|x Mathematical models.
|
650 |
|
0 |
|a Marketing
|x Mathematical models.
|
650 |
|
6 |
|a Gestion
|x Modèles mathématiques.
|
650 |
|
6 |
|a Marketing
|x Modèles mathématiques.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Industrial Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Management Science.
|2 bisacsh
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Organizational Behavior.
|2 bisacsh
|
650 |
|
7 |
|a Management
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Marketing
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Moutinho, Luiz.
|
700 |
1 |
|
|a Huarng, Kun-Huang.
|
776 |
0 |
8 |
|i Print version:
|t Quantitative modelling in marketing and management.
|b 2nd edition
|z 9789814696340
|w (DLC) 2015020809
|w (OCoLC)910802562
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1091550
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4394928
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1091550
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12681862
|
994 |
|
|
|a 92
|b IZTAP
|