Cargando…

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn928387446
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 151109s2015 nju o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d OCLCO  |d EBLCP  |d OCLCO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d NJR  |d OCLCQ  |d VNS  |d VTS  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 946309189 
020 |a 9789814696357  |q (electronic bk.) 
020 |a 9814696358  |q (electronic bk.) 
020 |z 9789814696340 
020 |z 981469634X 
029 1 |a DEBBG  |b BV043785046 
029 1 |a DEBSZ  |b 472872222 
035 |a (OCoLC)928387446  |z (OCoLC)946309189 
050 4 |a HD30.25  |b .M68 2015eb 
072 7 |a BUS  |x 082000  |2 bisacsh 
072 7 |a BUS  |x 041000  |2 bisacsh 
072 7 |a BUS  |x 042000  |2 bisacsh 
072 7 |a BUS  |x 085000  |2 bisacsh 
082 0 4 |a 658.80072/7  |2 23 
049 |a UAMI 
245 0 0 |a Quantitative modelling in marketing and management /  |c [edited] by Luiz Moutinho & Kun-Huang Huarng. 
250 |a 2nd edition. 
264 1 |a New Jersey :  |b World Scientific,  |c [2015] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a ReferencesChapter 2. Role of Structural Equation Modelling in Theory Testing and Development; 1. Introduction; 1.1. Structural equation modelling; 1.2. Terminology, rules, and conventions; 2. Structural Equation Modelling-Example; 2.1. Model identification; 2.2. Goodness-of-fit; 2.3. Model fit summary for the current example; 3. Model Estimation, Modification, and Interpretation; APPENDIX; References; Chapter 3. Partial Least Squares Path Modelling in Marketing and Management Research: An Annotated Application; 1. Introduction; 2. The PLSPM Algorithm. 
505 0 |a Preface; Introduction; Part 1. Statistical Modelling; Chapter 1. A Review of the Major Multidimensional Scaling Models for the Analysis of Preference/Dominance Data in Marketing; 1. Introduction; 2. The Vector MDS Model; 2.1. The individual level vector MDS model; 2.2. The segment level or clusterwise vector MDS model; 3. The Unfolding MDS Model; 3.1. The individual level simple unfolding model; 3.2. The segment level or clusterwise multidimensional unfolding model; 4. A Marketing Application; 4.1. The vector model results; 4.2. The simple unfolding model results; 5. Discussion. 
505 8 |a 3. PLSPM Properties: Strengths and Weaknesses4. Applied Example: The Role of Trust on Consumers Adoption of Online Banking; 4.1. The model; 4.2. Method; 4.3. Estimating a PLSPM. Step 1. Dealing with second order factors; 4.4. Estimating a PLSPM. Step 2. Validating the measurement (outer) model; 4.4.1. Reliability; 4.4.2. Convergent validity; 4.4.3. Discriminant validity; 4.5. Estimating a PLSPM. Step 3. Assessing the structural (inner) model; 4.5.1. R2 of dependent LV; 4.5.2. Predictive relevance; 4.6. Estimating a PLSPM. Step 4. Hypotheses testing; 5. Conclusion; References. 
505 8 |a Chapter 4. Statistical Model Selection1. Introduction; 2. Some Example Analyses; 2.1. Tourism in Portugal; 2.2. Union membership; 3. Problem 1: Including Non-Important Variables in the Model; 3.1. Simulating data; 3.2. Models derived from simulated data; 4. Problem 2: Not Including Important Variables in the Model; 4.1. Modelling fuel consumption; 5. Conclusion; References; Part 2. Computer Modelling; Chapter 5. Artificial Neural Networks and Structural Equation Modelling: An Empirical Comparison to Evaluate Business Customer Loyalty; 1. Introduction; 2. Literature Review; 2.1. Loyalty. 
505 8 |a 2.2. Loyalty determinants3. Research Method; 3.1. ANNs; 3.2. Structural equation modelling; 4. Comparisons; 4.1. Latent variables; 4.2. Causal interactions; 4.3. Learned associative properties; 4.4. Interconnectivity-neurons and indicators; 4.5. Predictability; 5. Results; 5.1. Results from the SEM; 5.2. Results from ANN; 6. Comparing Modelling Performance; 7. Comparing Results; 8. Conclusion; References; Chapter 6. The Application of NN to Management Problems; 1. Artificial Neural Networks in the Management Field; 2. Why use ANNs?; 3. ANNs; 3.1. Architecture of NNs; 3.2. Learning algorithms. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Management  |x Mathematical models. 
650 0 |a Marketing  |x Mathematical models. 
650 6 |a Gestion  |x Modèles mathématiques. 
650 6 |a Marketing  |x Modèles mathématiques. 
650 7 |a BUSINESS & ECONOMICS  |x Industrial Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Management Science.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Organizational Behavior.  |2 bisacsh 
650 7 |a Management  |x Mathematical models  |2 fast 
650 7 |a Marketing  |x Mathematical models  |2 fast 
700 1 |a Moutinho, Luiz. 
700 1 |a Huarng, Kun-Huang. 
776 0 8 |i Print version:  |t Quantitative modelling in marketing and management.  |b 2nd edition  |z 9789814696340  |w (DLC) 2015020809  |w (OCoLC)910802562 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1091550  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4394928 
938 |a EBSCOhost  |b EBSC  |n 1091550 
938 |a YBP Library Services  |b YANK  |n 12681862 
994 |a 92  |b IZTAP