Cargando…

Learning real-time processing with Spark Streaming : building scalable and fault-tolerant streaming applications made easy with Spark Streaming /

Building scalable and fault-tolerant streaming applications made easy with Spark streaming About This Book Process live data streams more efficiently with better fault recovery using Spark Streaming Implement and deploy real-time log file analysis Learn about integration with Advance Spark Libraries...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gupta, Sumit (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn926046000
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 151022s2015 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d N$T  |d IDEBK  |d YDXCP  |d COO  |d EBLCP  |d VT2  |d DEBSZ  |d OCLCF  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d CEF  |d OCLCQ  |d OCLCO  |d WYU  |d UAB  |d UKAHL  |d OCLCQ  |d OCLCO  |d UK7LJ  |d OCLCQ  |d INTCL  |d OCLCO  |d OCLCQ  |d INARC  |d QGK 
019 |a 922700414  |a 922918771  |a 935250017  |a 1259140692 
020 |a 9781783987672  |q (electronic bk.) 
020 |a 1783987677  |q (electronic bk.) 
020 |a 1783987669 
020 |a 9781783987665 
020 |z 9781783987665 
029 1 |a CHNEW  |b 000893915 
029 1 |a CHVBK  |b 374530726 
029 1 |a DEBBG  |b BV043627569 
029 1 |a DEBSZ  |b 473872048 
029 1 |a GBVCP  |b 89716864X 
035 |a (OCoLC)926046000  |z (OCoLC)922700414  |z (OCoLC)922918771  |z (OCoLC)935250017  |z (OCoLC)1259140692 
037 |a CL0500000662  |b Safari Books Online 
050 4 |a TK5105.386 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.7876  |2 23 
049 |a UAMI 
100 1 |a Gupta, Sumit,  |e author. 
245 1 0 |a Learning real-time processing with Spark Streaming :  |b building scalable and fault-tolerant streaming applications made easy with Spark Streaming /  |c Sumit Gupta. 
246 3 0 |a Building scalable and fault-tolerant streaming applications made easy with Spark Streaming 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Online resource; title from cover page (Safari, viewed October 20, 2015). 
500 |a Includes index. 
520 |a Building scalable and fault-tolerant streaming applications made easy with Spark streaming About This Book Process live data streams more efficiently with better fault recovery using Spark Streaming Implement and deploy real-time log file analysis Learn about integration with Advance Spark Libraries - GraphX, Spark SQL, and MLib. Who This Book Is For This book is intended for big data developers with basic knowledge of Scala but no knowledge of Spark. It will help you grasp the basics of developing real-time applications with Spark and understand efficient programming of core elements and applications. What You Will Learn Install and configure Spark and Spark Streaming to execute applications Explore the architecture and components of Spark and Spark Streaming to use it as a base for other libraries Process distributed log files in real-time to load data from distributed sources Apply transformations on streaming data to use its functions Integrate Apache Spark with the various advance libraries like MLib and GraphX Apply production deployment scenarios to deploy your application In Detail Using practical examples with easy-to-follow steps, this book will teach you how to build real-time applications with Spark Streaming. Starting with installing and setting the required environment, you will write and execute your first program for Spark Streaming. This will be followed by exploring the architecture and components of Spark Streaming along with an overview of libraries/functions exposed by Spark. Next you will be taught about various client APIs for coding in Spark by using the use-case of distributed log file processing. You will then apply various functions to transform and enrich streaming data. Next you will learn how to cache and persist datasets. Moving on you will integrate Apache Spark with various other libraries/components of Spark like Mlib, GraphX, and Spark SQL. Finally, you will learn about deploying your application and cover the different scenarios ranging from standalone mode to distributed mode using Mesos, Yarn, and private data centers or on cloud infrastructure. Style and approach A Step-by-Step approach to learn Spark Streaming in a structured manner, with detailed explanation of basic and advance features in an easy-to-follow Style. Each topic is explained sequentially and supported with real world examples and executable code snippets that appeal to the needs of readers with the wide range of experiences. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast  |0 (OCoLC)fst01938143 
650 0 |a Streaming technology (Telecommunications) 
650 2 |a Webcasts as Topic 
650 6 |a En continu (Télécommunications) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Streaming technology (Telecommunications)  |2 fast  |0 (OCoLC)fst01134637 
776 0 8 |i Print version:  |a Gupta, Sumit.  |t Learning Real-time Processing with Spark Streaming.  |d Birmingham : Packt Publishing Ltd, ©2015  |z 9781783987665 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1074161  |z Texto completo 
938 |a Internet Archive  |b INAR  |n learningrealtime0000gupt 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29347942 
938 |a EBSCOhost  |b EBSC  |n 1074161 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32798013 
938 |a YBP Library Services  |b YANK  |n 12625216 
994 |a 92  |b IZTAP