|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn916530911 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
150807t20152015enk o 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e rda
|e pn
|c IDEBK
|d EBLCP
|d OSU
|d DEBSZ
|d COO
|d TEFOD
|d OCLCF
|d N$T
|d OCLCQ
|d MERUC
|d OCLCQ
|d VT2
|d NLE
|d UKMGB
|d OCLCQ
|d WYU
|d S9I
|d STF
|d UKAHL
|d RDF
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 018007151
|2 Uk
|
020 |
|
|
|a 9781784391201
|q (electronic bk.)
|
020 |
|
|
|a 1784391204
|q (electronic bk.)
|
020 |
|
|
|z 1784396052
|
020 |
|
|
|z 9781784396053
|
029 |
1 |
|
|a AU@
|b 000056112834
|
029 |
1 |
|
|a AU@
|b 000066232786
|
029 |
1 |
|
|a DEBBG
|b BV043622441
|
029 |
1 |
|
|a DEBSZ
|b 445087730
|
029 |
1 |
|
|a UKMGB
|b 018007151
|
035 |
|
|
|a (OCoLC)916530911
|
037 |
|
|
|a 818415
|b MIL
|
037 |
|
|
|a 01F43055-BCC2-44A6-89AF-31BE58483F0D
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.73.P98
|
050 |
|
4 |
|a T55.4-60.8
|
072 |
|
7 |
|a COM
|x 051360
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 021030
|2 bisacsh
|
082 |
0 |
4 |
|a 005.13
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Layton, Robert,
|e author.
|
245 |
1 |
0 |
|a Learning data mining with Python :
|b harness the power of Python to analyze data and create insightful predictive models /
|c Robert Layton.
|
246 |
3 |
0 |
|a Harness the power of Python to analyze data and create insightful predictive models
|
264 |
|
1 |
|a Birmingham, UK :
|b Packt Publishing,
|c 2015.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (xiv, 317 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Community experience distilled
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example
|
505 |
8 |
|
|a What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees
|
505 |
8 |
|
|a Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters
|
505 |
8 |
|
|a The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer
|
505 |
8 |
|
|a The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix
|
520 |
|
|
|a If you are a programmer who wants to get started with data mining, then this book is for you.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Data mining.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
7 |
|a COMPUTERS
|x Programming Languages
|x Python.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Databases
|x Data Mining.
|2 bisacsh
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Layton, Robert.
|t Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models.
|d Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015
|h xiv, 317 pages
|z 9781784396053
|
830 |
|
0 |
|a Community experience distilled.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH29022851
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL2120251
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1046540
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis32252648
|
938 |
|
|
|a Internet Archive
|b INAR
|n learningdatamini0000layt
|
994 |
|
|
|a 92
|b IZTAP
|