Cargando…

Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models /

If you are a programmer who wants to get started with data mining, then this book is for you.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Layton, Robert (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn916530911
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 150807t20152015enk o 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d EBLCP  |d OSU  |d DEBSZ  |d COO  |d TEFOD  |d OCLCF  |d N$T  |d OCLCQ  |d MERUC  |d OCLCQ  |d VT2  |d NLE  |d UKMGB  |d OCLCQ  |d WYU  |d S9I  |d STF  |d UKAHL  |d RDF  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 018007151  |2 Uk 
020 |a 9781784391201  |q (electronic bk.) 
020 |a 1784391204  |q (electronic bk.) 
020 |z 1784396052 
020 |z 9781784396053 
029 1 |a AU@  |b 000056112834 
029 1 |a AU@  |b 000066232786 
029 1 |a DEBBG  |b BV043622441 
029 1 |a DEBSZ  |b 445087730 
029 1 |a UKMGB  |b 018007151 
035 |a (OCoLC)916530911 
037 |a 818415  |b MIL 
037 |a 01F43055-BCC2-44A6-89AF-31BE58483F0D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
050 4 |a T55.4-60.8 
072 7 |a COM  |x 051360  |2 bisacsh 
072 7 |a COM  |x 021030  |2 bisacsh 
082 0 4 |a 005.13 
049 |a UAMI 
100 1 |a Layton, Robert,  |e author. 
245 1 0 |a Learning data mining with Python :  |b harness the power of Python to analyze data and create insightful predictive models /  |c Robert Layton. 
246 3 0 |a Harness the power of Python to analyze data and create insightful predictive models 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (xiv, 317 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Community experience distilled 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the IPython notebook -- Installing Python -- Installing IPython -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example 
505 8 |a What is classification?Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing using pipelines -- An example -- Standard preprocessing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees 
505 8 |a Loading the datasetCollecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Parameters in Random forests -- Applying Random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Choosing parameters 
505 8 |a The movie recommendation problemObtaining the dataset -- Loading with pandas -- Sparse data formats -- The Apriori implementation -- The Apriori algorithm -- Implementation -- Extracting association rules -- Evaluation -- Summary -- Chapter 5: Extracting Features with Transformers -- Feature extraction -- Representing reality in models -- Common feature patterns -- Creating good features -- Feature selection -- Selecting the best individual features -- Feature creation -- Principal Component Analysis -- Creating your own transformer 
505 8 |a The transformer APIImplementation details -- Unit testing -- Putting it all together -- Summary -- Chapter 6: Social Media Insight Using Naive Bayes -- Disambiguation -- Downloading data from a social network -- Loading and classifying the dataset -- Creating a replicable dataset from Twitter -- Text transformers -- Bag-of-words -- N-grams -- Other features -- Naive Bayes -- Bayes' theorem -- Naive Bayes algorithm -- How it works -- Application -- Extracting word counts -- Converting dictionaries to a matrix 
520 |a If you are a programmer who wants to get started with data mining, then this book is for you. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a COMPUTERS  |x Databases  |x Data Mining.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Layton, Robert.  |t Learning data mining with Python : harness the power of Python to analyze data and create insightful predictive models.  |d Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2015  |h xiv, 317 pages  |z 9781784396053 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1046540  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH29022851 
938 |a EBL - Ebook Library  |b EBLB  |n EBL2120251 
938 |a EBSCOhost  |b EBSC  |n 1046540 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis32252648 
938 |a Internet Archive  |b INAR  |n learningdatamini0000layt 
994 |a 92  |b IZTAP