|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn913335694 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
150705s2015 gw a ob 000 0 eng d |
040 |
|
|
|a CN3GA
|b eng
|e pn
|c CN3GA
|d OCLCO
|d YDXCP
|d OCLCO
|d EBLCP
|d IDEBK
|d E7B
|d OCLCO
|d N$T
|d CUV
|d OCLCO
|d OCLCF
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCO
|d AGLDB
|d ICA
|d YDX
|d OCLCO
|d ZCU
|d MERUC
|d OCLCQ
|d IDB
|d D6H
|d VTS
|d ICG
|d VT2
|d OCLCQ
|d WYU
|d STF
|d DKC
|d OCLCQ
|d M8D
|d OCLCQ
|d RBN
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 910281895
|a 910447168
|a 982105136
|a 982140391
|a 982233872
|a 1066463753
|
020 |
|
|
|a 3110359421
|q (electronic bk.)
|
020 |
|
|
|a 9783110359428
|q (electronic bk.)
|
020 |
|
|
|a 9783110386806
|q (electronic bk.)
|
020 |
|
|
|a 3110386801
|q (electronic bk.)
|
020 |
|
|
|a 3110359405
|
020 |
|
|
|a 9783110359404
|
020 |
|
|
|z 9783110359404
|q (paperback)
|
020 |
|
|
|z 3110359405
|q (paperback)
|
024 |
3 |
|
|a 9783110359404
|
029 |
1 |
|
|a AU@
|b 000056102283
|
029 |
1 |
|
|a AU@
|b 000066769220
|
029 |
1 |
|
|a CHNEW
|b 000973387
|
029 |
1 |
|
|a DEBSZ
|b 447056433
|
029 |
1 |
|
|a DEBSZ
|b 484747533
|
035 |
|
|
|a (OCoLC)913335694
|z (OCoLC)910281895
|z (OCoLC)910447168
|z (OCoLC)982105136
|z (OCoLC)982140391
|z (OCoLC)982233872
|z (OCoLC)1066463753
|
037 |
|
|
|a 788192
|b MIL
|
050 |
|
4 |
|a QA297
|b .H45 2015
|
072 |
|
7 |
|a QA
|2 lcco
|
072 |
|
7 |
|a MAT
|x 041000
|2 bisacsh
|
082 |
0 |
4 |
|a 518
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Heister, Timo,
|e author.
|
245 |
1 |
0 |
|a Introduction to scientific computing :
|b for scientists and engineers /
|c Timo Heister, Leo G. Rebholz.
|
264 |
|
1 |
|a Berlin ;
|a Boston :
|b De Gruyter,
|c [2015]
|
300 |
|
|
|a 1 online resource (xi, 138 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter textbook
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Contents; 1 Introduction; 1.1 Why study numerical methods?; 1.2 Terminology; 1.3 Convergence terminology; 1.4 Exercises; 2 Computer representation of numbers and roundoff error; 2.1 Examples of the effects of roundoff error; 2.2 Binary numbers; 2.3 64 bit floating point numbers; 2.3.1 Avoid adding large and small numbers; 2.3.2 Subtracting two nearly equal numbers is bad; 2.4 Exercises; 3 Solving linear systems of equations; 3.1 Linear systems of equations and solvability; 3.2 Solving triangular systems; 3.3 Gaussian elimination; 3.4 The backslash operator; 3.5 LU decomposition.
|
505 |
8 |
|
|a 3.6 Exercises4 Finite difference methods; 4.1 Approximating the first derivative; 4.1.1 Forward and backward differences; 4.1.2 Centered difference; 4.1.3 Three point difference formulas; 4.1.4 Further notes; 4.2 Approximating the second derivative; 4.3 Application: Initial value ODE's using the forward Euler method; 4.4 Application: Boundary value ODE's; 4.5 Exercises; 5 Solving nonlinear equations; 5.1 The bisection method; 5.2 Newton's method; 5.3 Secant method; 5.4 Comparing bisection, Newton, secant method; 5.5 Combining secant and bisection and the fzero command.
|
505 |
8 |
|
|a 5.6 Equation solving in higher dimensions5.7 Exercises; 6 Accuracy in solving linear systems; 6.1 Gauss-Jordan elimination and finding matrix inverses; 6.2 Matrix and vector norms and condition number; 6.3 Sensitivity in linear system solving; 6.4 Exercises; 7 Eigenvalues and eigenvectors; 7.1 Mathematical definition; 7.2 Power method; 7.3 Application: Population dynamics; 7.4 Exercises; 8 Fitting curves to data; 8.1 Interpolation; 8.1.1 Interpolation by a single polynomial; 8.1.2 Piecewise polynomial interpolation; 8.2 Curve fitting; 8.2.1 Line of best fit; 8.2.2 Curve of best fit.
|
505 |
8 |
|
|a 8.3 Exercises9 Numerical integration; 9.1 Newton-Cotes methods; 9.2 Composite rules; 9.3 MATLAB's integral function; 9.4 Gauss quadrature; 9.5 Exercises; 10 Initial value ODEs; 10.1 Reduction of higher order ODEs to first order; 10.2 Common methods and derivation from integration rules; 10.2.1 Backward Euler; 10.2.2 Crank-Nicolson; 10.2.3 Runge-Kutta 4; 10.3 Comparison of speed of implicit versus explicit solvers; 10.4 Stability of ODE solvers; 10.4.1 Stability of forward Euler; 10.4.2 Stability of backward Euler; 10.4.3 Stability of Crank-Nicolson; 10.4.4 Stability of Runge-Kutta 4.
|
505 |
8 |
|
|a 10.5 Accuracy of ODE solvers10.5.1 Forward Euler; 10.5.2 Backward Euler; 10.5.3 Crank-Nicolson; 10.5.4 Runge-Kutta 4; 10.6 Summary, general strategy, and MATLAB ODE solvers; 10.7 Exercises; A Getting started with Octave and MATLAB; A.1 Basic operations; A.2 Arrays; A.3 Operating on arrays; A.4 Script files; A.5 Function files; A.5.1 Inline functions; A.5.2 Passing functions to other functions; A.6 Outputting information; A.7 Programming in MATLAB; A.8 Plotting; A.9 Exercises.
|
520 |
|
|
|a Nowadays most mathematics done in practice is done on a computer. In engineering it is necessary to solve more than 1 million equations simultaneously, and computers can be used to reduce the calculation time from years to minutes or even seconds. This book explains: How can we approximate these important mathematical processes? How accurate are our approximations? How efficient are our approximations?
|
504 |
|
|
|a Includes bibliographical references.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Engineering
|x Data processing.
|
650 |
|
0 |
|a Science
|x Data processing.
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
0 |
|a Numerical analysis
|x Data processing.
|
650 |
|
6 |
|a Ingénierie
|x Informatique.
|
650 |
|
6 |
|a Sciences
|x Informatique.
|
650 |
|
6 |
|a Analyse numérique.
|
650 |
|
6 |
|a Analyse numérique
|x Informatique.
|
650 |
|
7 |
|a MATHEMATICS
|x Numerical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Engineering
|x Data processing.
|2 fast
|0 (OCoLC)fst00910334
|
650 |
|
7 |
|a Numerical analysis.
|2 fast
|0 (OCoLC)fst01041273
|
650 |
|
7 |
|a Numerical analysis
|x Data processing.
|2 fast
|0 (OCoLC)fst01041279
|
650 |
|
7 |
|a Science
|x Data processing.
|2 fast
|0 (OCoLC)fst01108207
|
650 |
|
7 |
|a Numerische Mathematik
|2 gnd
|
650 |
|
7 |
|a MATLAB
|2 gnd
|
700 |
1 |
|
|a Rebholz, Leo G.,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Heister, Timo.
|t Introduction to scientific computing.
|d Berlin ; Boston : De Gruyter, [2015]
|z 9783110359404
|w (DLC) 2015026895
|w (OCoLC)913572856
|
830 |
|
0 |
|a De Gruyter textbook.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=999665
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL2056391
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11059890
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 999665
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis31157855
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11652485
|
994 |
|
|
|a 92
|b IZTAP
|