Cargando…

Multivariable Calculus and Differential Geometry.

This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stoke...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Walschap, Gerard
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin/Boston, Germany : De Gruyter, 2015.
©2015
Colección:De Gruyter graduate.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn911847214
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 150626s2015 xx ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d YDXCP  |d OCLCO  |d OCLCF  |d COO  |d OCLCQ  |d CCO  |d LOA  |d K6U  |d MERUC  |d PIFAG  |d FVL  |d ZCU  |d OCLCQ  |d IDB  |d DEGRU  |d U3W  |d COCUF  |d STF  |d WRM  |d OCLCQ  |d ICG  |d INT  |d OCLCQ  |d WYU  |d OCLCO  |d AU@  |d VT2  |d TKN  |d OCLCQ  |d UBY  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d CUY  |d OCLCQ  |d OCLCO  |d COM  |d N$T  |d OCLCQ  |d SFB 
019 |a 1013794952  |a 1055387727  |a 1058433974  |a 1081225898  |a 1311344642 
020 |a 3110369540  |q (ebk) 
020 |a 9783110369540  |q (ebk) 
020 |a 9783110392791  |q (electronic bk.) 
020 |a 3110392798  |q (electronic bk.) 
020 |z 9783110369496 
020 |z 3110369494 
029 1 |a AU@  |b 000056098415 
035 |a (OCoLC)911847214  |z (OCoLC)1013794952  |z (OCoLC)1055387727  |z (OCoLC)1058433974  |z (OCoLC)1081225898  |z (OCoLC)1311344642 
037 |a 802032  |b MIL 
050 4 |a QA641 
072 7 |a QA  |2 lcco 
082 0 4 |a 516.3/6 
049 |a UAMI 
100 1 |a Walschap, Gerard. 
245 1 0 |a Multivariable Calculus and Differential Geometry. 
260 |a Berlin/Boston, Germany :  |b De Gruyter,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (366) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter graduate. 
588 0 |a Print version record. 
504 |a Includes bibliographical references (page 349) and index. 
505 0 |a Preface -- 1 Euclidean Space -- 1.1 Vector spaces -- 1.2 Linear transformations -- 1.3 Determinants -- 1.4 Euclidean spaces -- 1.5 Subspaces of Euclidean space -- 1.6 Determinants as volume -- 1.7 Elementary topology of Euclidean spaces -- 1.8 Sequences -- 1.9 Limits and continuity -- 1.10 Exercises -- 2 Differentiation -- 2.1 The derivative -- 2.2 Basic properties of the derivative -- 2.3 Differentiation of integrals -- 2.4 Curves -- 2.5 The inverse and implicit function theorems -- 2.6 The spectral theorem and scalar products -- 2.7 Taylor polynomials and extreme values -- 2.8 Vector fields -- 2.9 Lie brackets -- 2.10 Partitions of unity -- 2.11 Exercises -- 3 Manifolds -- 3.1 Submanifolds of Euclidean space -- 3.2 Differentiablemaps on manifolds -- 3.3 Vector fields on manifolds -- 3.4 Lie groups -- 3.5 The tangent bundle -- 3.6 Covariant differentiation -- 3.7 Geodesics -- 3.8 The second fundamental tensor -- 3.9 Curvature -- 3.10 Sectional curvature -- 3.11 Isometries -- 3.12 Exercises -- 4 Integration on Euclidean space -- 4.1 The integral of a function over a box -- 4.2 Integrability and discontinuities -- 4.3 Fubini's theorem -- 4.4 Sard's theorem -- 4.5 The change of variables theorem -- 4.6 Cylindrical and spherical coordinates -- 4.6.1 Cylindrical coordinates -- 4.6.2 Spherical coordinates -- 4.7 Some applications -- 4.7.1 Mass -- 4.7.2 Center ofmass -- 4.7.3 Moment of inertia -- 4.8 Exercises -- 5 Differential Forms -- 5.1 Tensors and tensor fields -- 5.2 Alternating tensors and forms -- 5.3 Differential forms -- 5.4 Integration on manifolds -- 5.5 Manifolds with boundary -- 5.6 Stokes' theorem -- 5.7 Classical versions of Stokes' theorem -- 5.7.1 An application: the polar planimeter -- 5.8 Closed forms and exact forms -- 5.9 Exercises -- 6 Manifolds as metric spaces. 
505 8 |a 6.1 Extremal properties of geodesics -- 6.2 Jacobi fields -- 6.3 The length function of a variation -- 6.4 The index formof a geodesic -- 6.5 The distance function -- 6.6 The Hopf-Rinow theorem -- 6.7 Curvature comparison -- 6.8 Exercises -- 7 Hypersurfaces -- 7.1 Hypersurfaces and orientation -- 7.2 The Gaussmap -- 7.3 Curvature of hypersurfaces -- 7.4 The fundamental theorem for hypersurfaces -- 7.5 Curvature in local coordinates -- 7.6 Convexity and curvature -- 7.7 Ruled surfaces -- 7.8 Surfaces of revolution -- 7.9 Exercises -- Appendix A -- Appendix B -- Index. 
520 |a This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Differential. 
650 6 |a Géométrie différentielle. 
650 7 |a calculus.  |2 aat 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Differential.  |2 fast  |0 (OCoLC)fst00940919 
653 |a Differential geometry. 
653 |a Riemannian geometry. 
776 0 8 |i Print version:  |a Walschap, Gerard, 1954-  |t Multivariable calculus and differential geometry.  |d Berlin : De Gruyter, [2015]  |z 3110369494  |w (DLC) 2015458315  |w (OCoLC)904420460 
830 0 |a De Gruyter graduate. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1017025  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27004433 
938 |a De Gruyter  |b DEGR  |n 9783110369540 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1787110 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29825411 
938 |a YBP Library Services  |b YANK  |n 11722142 
938 |a EBSCOhost  |b EBSC  |n 1017025 
994 |a 92  |b IZTAP