Cargando…

Encyclopedia of thermal packaging. Set 2, Thermal packaging tools /

The second set in the encyclopedia, Thermal Packaging Tools, includes volumes dedicated to thermal design of data centers, techniques and models for the design and optimization of heat sinks, the development and use of reduced-order "compact" thermal models of electronic components, a data...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bar-Cohen, Avram, 1946- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Vol. 1. Cooling of microelectronic and nanoelectronic equipment
  • v. 2. Energy optimization and thermal management of data centers
  • v. 3. Compact thermal models of electronic components
  • v. 4. Thermally-informed design of microelectronic components.
  • Volume 1; Contents; Foreword to the Encyclopedia of Thermal Packaging; Dedication; Chapter 1. A Review of Cooling Road Maps for 3D Chip Packages; 1.1. Introduction; 1.2. TSV Fabrication; 1.3. Thermal-Mechanical-Electrical Challenges in 3-D; Acknowledgement; References; Chapter 2. Thermal Performance Mapping of Direct Liquid Cooled 3D Chip Stacks; 2.1. Introduction; 2.2. Passive Immersion Cooling; 2.2.1. Single Phase Natural Convection; 2.2.2. Pool Boiling; 2.3. Pumped Liquid Systems; 2.3.1. Single Phase Forced Convection; 2.3.2. Flow Boiling; 2.4. Performance Maps; 2.5. Conclusions.
  • 2.6. NomenclatureReferences; Chapter 3. Dynamic Thermal Management Considering Accurate Temperature-Leakage Interdependency; 3.1. Introduction; 3.1.1. Thermal Issues in Modern Computer Chips; 3.1.2. Dynamic Thermal Management; 3.1.3. Temperature-leakage Interdependency; 3.1.4. Motivation of DTM Considering Temperature-leakage Interdependency; 3.2. RC Thermal Model Considering Leakage; 3.2.1. Single Core RC Thermal Model; 3.2.2. Leakage and Temperature Dependency; 3.2.3. Thermal Model with Leakage Power; 3.2.3.1. Case 1; 3.2.3.2. Case 2; 3.2.3.3. Case 3.
  • 3.3. Thermal Aware Speed and Task Scheduling3.3.1. Problem Formulation; 3.3.2. Dynamic Programming with Fixed Task Order; 3.3.3. Considering Task Rescheduling; 3.3.3.1. Dynamic Programming with Task Scheduling; 3.3.3.2. Heuristic to Improve the Computation Speed; 3.4. Simulated Test Case; 3.4.1. Comparison 1: With Existing Leakage-temperature Models; 3.4.2. Comparison 2: Fixed Order, Full Rescheduling and Grouping; 3.5. Conclusion and Future Work; 3.5.1. Conclusion; 3.5.2. Future Work; Nomenclature; Acknowledgments; References.
  • Chapter 4. Energy Reduction and Performance Maximization Through Improved Cooling4.1. Introduction; 4.2. Leakage Current Effects; 4.3. Improved Cooling; 4.4. Performance Modeling; 4.5. Reliability Concerns; 4.6. Frequency Improvements; 4.7. System Performance; 4.8. Total Cost of Ownership; 4.9. Conclusions; Nomenclature for Figure Legends; Nomenclature for Equations; Acknowledgments; References; Chapter 5. Optimal Choice of Heat Sinks from an Industrial Point of View; 5.1. Introduction; 5.2. Heat Sink Basics; 5.2.1. The Murray-Gardner Assumptions; 5.2.2. Heat Spreading; 5.2.3. Radiation.
  • 5.3. Heat Sink Modeling Approaches from a Designer's Perspective5.3.1. Approaches not Recommended; 5.3.1.1. Vendor Data; 5.3.1.2. Convective Resistance Models; 5.3.1.3. Two-resistance Model; 5.3.1.4. Empirical Correlations; 5.3.2. Approaches to Acquire Insight in the Basic Physics; 5.3.2.1. Heat Exchanger Model; 5.3.3. Approaches to Acquire Insight in Optimization Parameters; 5.3.3.1. Literature Study; 5.3.3.2. Semi-analytical Correlations; 5.3.3.3. Constructal Theory; 5.3.3.4. Web-based Tools; 5.3.3.5. Dedicated Heat Sink Software; 5.3.4. Approaches to Acquire Insight in Fluid Dynamics.