Cargando…

Building machine learning systems with Python : get more from your data through creating practical machine learning systems with Python /

This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Coelho, Luis Pedro (Autor), Richert, Willi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, England : Packt Publishing, 2015.
Edición:Second edition.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn908064615
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 150413t20152015enka o 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d EBLCP  |d N$T  |d OCLCF  |d TEFOD  |d IDB  |d CCO  |d COCUF  |d CNNOR  |d LOA  |d K6U  |d STF  |d AGLDB  |d OCLCQ  |d OCLCO  |d ICA  |d PIFAG  |d FVL  |d ZCU  |d MERUC  |d OCLCQ  |d VT2  |d U3W  |d D6H  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d YDX  |d OCLCQ  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d HS0  |d OCLCQ  |d OCLCO  |d QGK  |d OCLCQ 
019 |a 961693793  |a 965760633  |a 1259135310 
020 |a 9781784392888  |q (electronic bk.) 
020 |a 178439288X  |q (electronic bk.) 
020 |a 1784392774 
020 |a 9781784392772 
020 |z 9781784392772 
029 1 |a AU@  |b 000067093636 
029 1 |a CHNEW  |b 000891138 
029 1 |a CHVBK  |b 374500584 
029 1 |a DEBBG  |b BV043619730 
029 1 |a DEBSZ  |b 489850529 
029 1 |a DKDLA  |b 820120-katalog:999930351505765 
035 |a (OCoLC)908064615  |z (OCoLC)961693793  |z (OCoLC)965760633  |z (OCoLC)1259135310 
037 |a 109A3526-9FF1-42E2-B13E-113C4D2BD8AC  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b C645 2015eb 
072 7 |a COM  |x 051010  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Coelho, Luis Pedro,  |e author. 
245 1 0 |a Building machine learning systems with Python :  |b get more from your data through creating practical machine learning systems with Python /  |c Luis Pedro Coelho, Willi Richert. 
250 |a Second edition. 
264 1 |a Birmingham, England :  |b Packt Publishing,  |c 2015. 
264 4 |c Ã2015 
300 |a 1 online resource (326 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed April 11, 2015). 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Machine Learning; Machine learning and Python -- a dream team; What the book will teach you (and what it will not); What to do when you are stuck; Getting started; Introduction to NumPy, SciPy, and matplotlib; Installing Python; Chewing data efficiently with NumPy and intelligently with SciPy; Learning NumPy; Indexing; Handling nonexisting values; Comparing the runtime; Learning SciPy; Our first (tiny) application of machine learning 
505 8 |a Reading in the dataPreprocessing and cleaning the data; Choosing the right model and learning algorithm; Before building our first model ... ; Starting with a simple straight line; Towards some advanced stuff; Stepping back to go forward -- another look at our data; Training and testing; Answering our initial question; Summary; Chapter 2: Classifying with Real-world Examples; The Iris dataset; Visualization is a good first step; Building our first classification model; Evaluation -- holding out data and cross-validation; Building more complex classifiers 
505 8 |a A more complex dataset and a more complex classifierLearning about the Seeds dataset; Features and feature engineering; Nearest neighbor classification; Classifying with scikit-learn; Looking at the decision boundaries; Binary and multiclass classification; Summary; Chapter 3: Clustering -- Finding Related Posts; Measuring the relatedness of posts; How not to do it; How to do it; Preprocessing -- similarity measured as a similar number of common words; Converting raw text into a bag of words; Counting words; Normalizing word count vectors; Removing less important words; Stemming 
505 8 |a Stop words on steroidsOur achievements and goals; Clustering; K-means; Getting test data to evaluate our ideas on; Clustering posts; Solving our initial challenge; Another look at noise; Tweaking the parameters; Summary; Chapter 4: Topic Modeling; Latent Dirichlet allocation; Building a topic model; Comparing documents by topics; Modeling the whole of Wikipedia; Choosing the number of topics; Summary; Chapter 5: Classification -- Detecting Poor Answers; Sketching our roadmap; Learning to classify classy answers; Tuning the instance; Tuning the classifier; Fetching the data 
505 8 |a Slimming the data down to chewable chunksPreselection and processing of attributes; Defining what is a good answer; Creating our first classifier; Starting with kNN; Engineering the features; Training the classifier; Measuring the classifier's performance; Designing more features; Deciding how to improve; Bias-variance and their tradeoff; Fixing high bias; Fixing high variance; High bias or low bias; Using logistic regression; A bit of math with a small example; Applying logistic regression to our post classification problem; Looking behind accuracy -- precision and recall 
520 |a This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x Programming Languages  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Richert, Willi,  |e author. 
776 0 8 |i Print version:  |a Coelho, Luis Pedro.  |t Building machine learning systems with Python.  |b Second edition  |z 9781784392772 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=971797  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 971797 
938 |a YBP Library Services  |b YANK  |n 12358572 
994 |a 92  |b IZTAP