Cargando…

Learning data mining with R : develop key skills and techniques with R to create and customize data mining algorithms /

This book is intended for the budding data scientist or quantitative analyst with only a basic exposure to R and statistics. This book assumes familiarity with only the very basics of R, such as the main data types, simple functions, and how to move data around. No prior experience with data mining...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Makhabel, Bater (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2015.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn903966642
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 150211t20152015enka o 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d N$T  |d COO  |d DEBSZ  |d CDX  |d OCLCF  |d OCLCQ  |d CCO  |d IDB  |d OCLCQ  |d LOA  |d CNNOR  |d K6U  |d STF  |d TEFOD  |d PIFAG  |d FVL  |d ZCU  |d AGLDB  |d MERUC  |d YDX  |d VT2  |d U3W  |d D6H  |d OCLCQ  |d VTS  |d ICG  |d NLE  |d INT  |d UKMGB  |d OCLCQ  |d WYU  |d G3B  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d HS0  |d OCLCQ  |d ORZ  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO 
015 |a GBB742477  |2 bnb 
016 7 |a 018006905  |2 Uk 
019 |a 1259163038 
020 |a 9781783982110  |q (electronic book) 
020 |a 178398211X  |q (electronic book) 
020 |z 1783982101 
020 |z 9781783982103 
029 1 |a AU@  |b 000056072584 
029 1 |a CHNEW  |b 000712068 
029 1 |a CHNEW  |b 000890375 
029 1 |a CHVBK  |b 374490929 
029 1 |a DEBBG  |b BV043617496 
029 1 |a DEBSZ  |b 427584663 
029 1 |a DEBSZ  |b 493158731 
029 1 |a UKMGB  |b 018006905 
035 |a (OCoLC)903966642  |z (OCoLC)1259163038 
037 |a A70F1E52-4CB7-47A9-A1C5-5C8EBAF6E3DC  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3  |b .M354 2015eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Makhabel, Bater,  |e author. 
245 1 0 |a Learning data mining with R :  |b develop key skills and techniques with R to create and customize data mining algorithms /  |c Bater Makhabel. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2015. 
264 4 |c ©2015 
300 |a 1 online resource (314 pages) :  |b illustrations (some color), tables 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community Experience Distilled 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed February 11, 2015). 
505 0 |a Cover -- Copyright -- Credits -- About the Author -- Acknowledgments -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Warming Up -- Big data -- Scalability and efficiency -- Data source -- Data mining -- Feature extraction -- Summarization -- The data mining process -- CRISP-DM -- SEMMA -- Social network mining -- Social network -- Text mining -- Information retrieval and text mining -- Mining text for prediction -- Web data mining -- Why R? -- What is the disadvantage of R? -- Statistics. 
505 8 |a Statistics and data mining -- Statistics and machine learning -- Statistics and R -- The limitations of statistics on data mining -- Machine learning -- Approaches to machine learning -- Machine learning architecture -- Data attributes and description -- Numeric attributes -- Categorical attributes -- Data description -- Data measuring -- Data cleaning -- Missing values -- Junk, noisy data, or outlier -- Data integration -- Data dimension reduction -- Eigenvalues and Eigenvectors -- Principal-Component Analysis -- Singular-value decomposition. 
505 8 |a CUR decomposition -- Data transformation and discretization -- Data transformation -- Normalization data transformation methods -- Data discretization -- Visualization of results -- Visualization with R -- Time for action -- Summary -- Chapter 2: Mining Frequent Patterns, Associations, and Correlations -- An overview of associations and patterns -- Patterns and pattern discovery -- The frequent itemset -- The frequent subsequence -- The frequent substructures -- Relationship or rules discovery -- Association rules -- Correlation rules. 
505 8 |a Market basket analysis -- The market basket model -- A-Priori algorithm -- Input data characteristics and data structure -- The A-Priori algorithm -- The R implementation -- A-Priori algorithm variants -- The Eclat algorithm -- The R implementation -- The FP-growth algorithm -- Input data characteristics and data structure -- The FP-growth algorithm -- The R implementation -- The GenMax algorithm with maximal frequent itemsets -- The R implementation -- The Charm algorithm with closed frequent itemsets -- The R implementation. 
505 8 |a The algorithm to generate association rules -- The R implementation -- Hybrid association rules mining -- Mining multilevel and multidimensional association rules -- Constraint-based frequent pattern mining -- Mining sequence dataset -- Sequence dataset -- The GSP algorithm -- The R implementation -- The SPADE algorithm -- The R implementation -- Rule generation from sequential patterns -- High-performance algorithms -- Time for action -- Summary -- Chapter 3: Classification -- Classification -- Generic decision tree induction 
520 |a This book is intended for the budding data scientist or quantitative analyst with only a basic exposure to R and statistics. This book assumes familiarity with only the very basics of R, such as the main data types, simple functions, and how to move data around. No prior experience with data mining packages is necessary; however, you should have a basic understanding of data mining concepts and processes. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a R (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Data mining  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Makhabel, Bater.  |t Learning data mining with R : develop key skills and techniques with R to create and customize data mining algorithms.  |d Birmingham, England : Packt Publishing, ©2015  |h ix, 287 pages  |z 9781783982103 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=946183  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28180676 
938 |a Coutts Information Services  |b COUT  |n 30584960 
938 |a ebrary  |b EBRY  |n ebr11015156 
938 |a EBSCOhost  |b EBSC  |n 946183 
938 |a YBP Library Services  |b YANK  |n 12280736 
994 |a 92  |b IZTAP