Cargando…

Microscale combustion and power generation /

Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine (portable defibrillators, drug delivery systems, etc.), to wireless communication and computing (cell phones, laptop compu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ju, Yiguang (Autor), Cadou, Christopher P., 1965- (Autor), Maruta, Kaoru (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2015.
Colección:Engineering collection.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Meso- and microscale combustion and flammability limits
  • 1.1 Premixed flames in meso- and microscale combustion
  • 1.2 Flammability limit and quenching diameter
  • 1.3 Heat recirculation
  • 1.4 Flame and wall structure coupling in microscale combustion
  • 1.5 Weak flame regimes with temperature gradients
  • 1.6 Coupling of thermal and kinetic quenching in microscale combustion
  • 1.7 Non-equilibrium combustion
  • References
  • 2. Boundary-accelerated flames in microchannels
  • 2.1 Physical and numerical models
  • 2.2 The boundary-layer accelerated flame
  • 2.3 Effects of varying channel dimensions
  • 2.4 Outflow acceleration and propulsion characteristics
  • 2.5 Effects of wall temperature
  • 2.6 Laminar-flame transition to detonation in long channels
  • 2.7 Discussion
  • References
  • 3. Flame instability in microscale combustion
  • 3.1 Repetitive extinction and re-ignition instability
  • 3.2 Spinning instability
  • 3.3 Spiral flames and pattern formations
  • References
  • 4. Microscale combustion modeling
  • 4.1 Introduction
  • 4.2 Microreactor thermal management
  • 4.3 Heterogeneous and homogeneous chemistry modeling
  • 4.4 Models used in microreactor research
  • 4.5 Zero-dimensional models
  • 4.6 One-dimensional channel-flow models
  • 4.7 Multidimensional microreactor models
  • 4.8 Applications of multidimensional models
  • 4.9 Turbulent microreactor combustion
  • 4.10 Non-continuum flows in microreactors
  • 4.11 Conclusion and future work
  • References
  • 5. Non-premixed micro combustion
  • 5.1 Microjet diffusion flames
  • 5.2 Basic microflame structure
  • 5.3 Methodology
  • 5.4 Characteristics of microjet methane diffusion flames
  • 5.5 Flame structure and stabilization mechanism
  • 5.6 Conclusion and future work
  • References
  • 6. Diffusion flame instability and cell formation in meso- and microscale combustion
  • 6.1 Cell flame formation in a microscale diffusion flame reactor
  • 6.2 Flame streets and unsteady flame propagation in mesoscale diffusion flames
  • 6.3 Conclusion and future work
  • References
  • 7. Micro-combustion in non-catalytic narrow ducts
  • 7.1 Overview of the state of the art
  • 7.2 Structure of the tubular micro-reactive flow
  • 7.3 Thermoacoustics
  • 7.4 Outer wall temperature
  • 7.5 Conclusion and future work
  • References
  • 8. Fundamentals of microscale catalytic combustion
  • 8.1 Introduction
  • 8.2 Methodology
  • 8.3 Characteristics of microscale catalytic combustion
  • 8.4 Enhancement of microscale combustion by catalyst segmentation
  • 8.5 Conclusion and future work
  • References
  • 9. Miniature liquid fuel combustion
  • 9.1 Overview
  • 9.2 Brief review of mesoscale liquid fuel combustors
  • 9.3 Liquid film combustor fundamentals
  • 9.4 Combustor design evaluation
  • 9.5 Liquid film combustion-driven TPV power system
  • 9.6 Conclusion and future work
  • References
  • 10. Heat-recirculating combustors
  • 10.1 Introduction
  • 10.2 Simplified analysis
  • 10.3 Scaling
  • 10.4 Practical perspectives
  • 10.5 Conclusion and future work
  • References
  • 11. Catalytic reactors: power generation and fuel processing
  • 11.1 Introduction to catalytic combustion
  • 11.2 Catalytic microreactors
  • 11.3 Basic theory of catalytic combustion
  • 11.4 Operation of microreactors for power generation
  • References
  • 12. Microreactor with a temperature gradient
  • 12.1 Weak flame in a temperature gradient
  • 12.2 Multistage oxidation study using weak flame in a temperature gradient
  • References
  • 13. Chemical micropropulsion
  • 13.1 Micropropulsion and scaling
  • 13.2 Materials, fabrication, and system integration
  • 13.3 Solid propellant thrusters
  • 13.4 Liquid propellant thrusters
  • 13.5 Gaseous propellant thrusters
  • 13.6 Conclusion and future work
  • References
  • 14. Micro-rotary engine power system
  • 14.1 Introduction
  • 14.2 Meso-scale "mini-rotary" engine
  • 14.3 MEMS-scale "micro-rotary" engine
  • 14.4 Conclusion and future work
  • References
  • 15. Small-scale reciprocating engines
  • 15.1 Survey of miniature research engines
  • 15.2 Miniature commercial engines
  • 15.3 Quantifying engine performance
  • 15.4 Performance measurements
  • 15.5 Fuels
  • 15.6 Sample performance data from three miniature engines
  • 15.7 Scaling of engine performance
  • 15.8 Small two-stroke piston engine combustion
  • 15.9 Conclusion and future work
  • References
  • 16. Combustors for microgas turbine engines
  • 16.1 Introduction
  • 16.2 Microgas turbine engines
  • 16.3 Basic combustion concepts
  • 16.4 Challenges of microgas turbine combustors
  • 16.5 Homogeneous gas-phase microcombustors
  • 16.6 Heterogeneous (catalytic) microcombustors
  • 16.7 Conclusion and future work
  • References
  • Index.