Cargando…

Electron paramagnetic resonance of transition ions /

This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed develop...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abragam, A.
Otros Autores: Bleaney, B. (Brebis)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, ©2012.
Colección:Oxford classic texts in the physical sciences.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; CONTENTS; PART I: PRELIMINARY SURVEY; 1. INTRODUCTION TO ELECTRON PARAMAGNETIC RESONANCE; 1.1. Electronic and nuclear magnetic dipole moments; 1.2. Hyperfine structure in a free atom or ion; 1.3. Magnetic resonance; 1.4. Effective spin and anisotropy; 1.5. 'Initial splittings' or 'fine structure'; 1.6. Magnetic hyperfine structure; 1.7. Hyperfine structure including nuclear electric quadrupole interaction; 1.8. A simple example; 1.9. Transition group ions and ligand fields; 1.10. Spin-spin interaction; 1.11. Spin-lattice interaction; 1.12. Dynamic nuclear orientation; 1.13. Endor.
  • 1.14. Experimental aspectsPART II: GENERAL SURVEY; 2. THE RESONANCE PHENOMENON; 2.1. Use of rotating coordinates; 2.2. Magnetic resonance; 2.3. Quantum-mechanical analysis; 2.4. Magnetic resonance in aggregated systems; 2.5. Adiabatic rapid passage; 2.6. Relaxation effects; 2.7. Radio-frequency pulses and spin-echoes; 2.8. Solution of the macroscopic equations for slow passage; 2.9. Intensity and line width; 2.10. Spectrometer sensitivity; 3. THE SPIN HAMILTONIAN AND THE SPECTRUM; 3.1. The spin Hamiltonian; 3.2. The effect of anisotropy in the g-factor; 3.3. Multipole fine structure.
  • 3.4. Fine structure in cubic fields (S = 5/2, 7/2)3.5. Electronic 'quadrupole' fine structure (S = 1, 8/2); 3.6. Electronic 'quadrupole' fine structure in a strong magnetic field; 3.7. Hyperfine structure I-introductory remarks; 3.8. Hyperfine structure II-strong external field; 3.9. Hyperfine structure III-nuclear electric quadrupole interaction; 3.10. 'Forbidden' hyperfine transitions; 3.11. Ligand hyperfine structure; 3.12. The spectrum of a powder; 3.13. Effects of crystal imperfections; 3.14. Weak-field Zeeman interaction for non-Kramers ions; 4. ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR).
  • 4.1. Introduction4.2. The Endor spectrum; 4.3. Enhancement of the nuclear transition probability; 4.4. Endor on donors in silicon; 4.5. Endor on donors in silicon-relaxation effects; 4.6. Relaxation effects in Endor-general; 4.7. The hyperfine structure of europium; 4.8. The Endor spectrum of Nd[sup(3+)] in LaCl[sub(3)]; 4.9. Endor measurements of ligand hyperfine structure; 4.10. Endor line widths; 4.11. 'Indirect'observation of Endor transitions; 4.12. Summary; 5. THE LANTHANIDE (4f) GROUP; 5.1. Lanthanide compounds; 5.2. The free ions; 5.3. Crystalline field theory-C[sub(3h)] symmetry.
  • 5.4. Magnetic hyperfine structure5.5. Nuclear electric quadrupole interaction; 5.6. Experimental results for ethylsulphates and anhydrous chlorides; 5.7. Experimental results for the double nitrates, Ln[sub(2)]Mg[sub(3)](NO[sub(3)])[sub(12)], 24H[sub(2)]O; 5.8. Lanthanide ions in cubic symmetry; 5.9. Ions with a half-filled 4f-shell, 4f[sup(7)], [sup(8)]S[sub(7/2)]. Eu[sup(2+)], Gd[sup(3+)], Tb[sup(4+)]; 5.10. Higher-order terms in the spin Hamiltonian; 6. THE ACTINIDE (5f) GROUP; 6.1. Ions and compounds of the actinide group; 6.2. Tripositive actinide ions; 6.3. Actinide ions in CaF[sub(2)].