Cargando…

New developments in evolutionary computation research /

A common approach for solving simulation-driven engineering problems is by using metamodel-assisted optimization algorithms, namely, in which a metamodel approximates the computationally expensive simulation and provides predicted values at a lower computational cost. Such algorithms typically gener...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Washington, Sean
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publisher's Inc., [2014]
Colección:Computer science, technology and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn902846711
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 150206s2014 nyu o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCA  |d AGLDB  |d OCLCQ  |d JBG  |d VTS  |d STF  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 913695109  |a 923677876  |a 928197408 
020 |a 9781634635257  |q (electronic bk.) 
020 |a 1634635256  |q (electronic bk.) 
020 |z 9781634634939 
020 |z 1634634934 
029 1 |a DEBBG  |b BV043031076 
029 1 |a DEBSZ  |b 42994036X 
029 1 |a DEBSZ  |b 442851162 
035 |a (OCoLC)902846711  |z (OCoLC)913695109  |z (OCoLC)923677876  |z (OCoLC)928197408 
050 4 |a TA347.E96  |b N49 2014eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/823  |2 23 
049 |a UAMI 
245 0 0 |a New developments in evolutionary computation research /  |c editor, Sean Washington. 
264 1 |a Hauppauge, New York :  |b Nova Science Publisher's Inc.,  |c [2014] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer Science, Technology and Applications 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a NEW DEVELOPMENTS IN EVOLUTIONARY COMPUTATION RESEARCH; NEW DEVELOPMENTS IN EVOLUTIONARY COMPUTATION RESEARCH; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; PREFACE; Chapter 1: MULTI-OBJECTIVE OPTIMIZATIONOF TRADING STRATEGIES USING GENETICALGORITHMS IN UNSTABLE ENVIRONMENTS; Abstract; A. Part A. Review of the Main Problem Solving and Optimization Techniques; B. Part B.A Review of Main Multi-Objective Optimization Techniques; C. Part C.A Case Study; Conclusion; References. 
505 8 |a Chapter 2: PROMOTING BETTER GENERALISATION IN MULTI-LAYER PERCEPTRONS USING A SIMULATED SYNAPTIC DOWNSCALING MECHANISMAbstract; 1. Introduction; 2. Background; 3. Model and Experiments; 4. Results and Analysis; 5. Conclusion; Acknowledgment; References; Chapter 3: PLANT PROPAGATION-INSPIRED ALGORITHMS; Abstract; 1. Introduction; 2. Background; 3. Plant Propagation Algorithms; 4. Applications; 5. Conclusion; References; Chapter 4: TOPOGRAPHICAL CLEARING DIFFERENTIAL EVOLUTION APPLIED TO REAL-WORLD MULTIMODAL OPTIMIZATION PROBLEMS; Abstract; 1. Introduction. 
505 8 |a 2. The Differential Evolution Algorithm3. Topographical Clearing; 4. Numerical Comparisons; 5. Conclusion; Appendix A. Nonlinear Systems Formulated as Optimization Problems; Appendix B. Data and Fitted Variables for the Catalytic Reactor Model; References; Chapter 5: ROBOTICS, EVOLUTION AND INTERACTIVITY IN SONIC ART INSTALLATIONS; Abstract; Introduction; 1. JaVOX, an Evolutionary Composition System; 2. Generative Sonification; 3. Automation x Interactivity; 4. Interactivity, Evolution and Structure; Conclusion; Acknowledgments; References. 
505 8 |a Chapter 6: AN ANALYSIS OF EVOLUTIONARY-BASED SAMPLING METHODOLOGIESAbstract; 1. Introduction; 2. Background; 3. Numerical Experiments: Design and Implementation; 4. Results and Discussion; 5. Conclusion; References; Blank Page; INDEX. 
520 |a A common approach for solving simulation-driven engineering problems is by using metamodel-assisted optimization algorithms, namely, in which a metamodel approximates the computationally expensive simulation and provides predicted values at a lower computational cost. Such algorithms typically generate an initial sample of solutions which are then used to train a preliminary metamodel and to initiate an optimization process. One approach for generating the initial sample is with the design of experiment methods which are statistically oriented, while the more recent search-driven sampling appr. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Evolutionary computation. 
650 0 |a Engineering mathematics. 
650 6 |a Réseaux neuronaux à structure évolutive. 
650 6 |a Mathématiques de l'ingénieur. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Evolutionary computation  |2 fast 
700 1 |a Washington, Sean. 
776 0 8 |i Print version:  |t New developments in evolutionary computation research  |z 9781634634939  |w (DLC) 2014042395  |w (OCoLC)897042180 
830 0 |a Computer science, technology and applications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=948063  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL2081023 
938 |a EBSCOhost  |b EBSC  |n 948063 
938 |a YBP Library Services  |b YANK  |n 12148052 
994 |a 92  |b IZTAP