Cargando…

Sobolev spaces on metric measure spaces : an approach based on upper gradients /

Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Heinonen, Juha (Autor), Koskela, Pekka (Autor), Shanmugalingam, Nageswari (Autor), Tyson, Jeremy T., 1972- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2015.
Colección:New mathematical monographs ; 27.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.
Descripción Física:1 online resource (xii, 434 pages)
Bibliografía:Includes bibliographical references and indexes.
ISBN:9781316248607
1316248607
9781316250495
1316250490
9781316135914
1316135918