Cargando…

Nonlinear mixture models : a bayesian approach /

This book, written by two mathematicians from the University of Southern California, provides a broad introduction to the important subject of nonlinear mixture models from a Bayesian perspective. It contains background material, a brief description of Markov chain theory, as well as novel algorithm...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tatarinova, Tatiana V. (Autor), Schumitzky, Alan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : Imperial College Press, [2015]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn900633207
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 150123t20152015njua ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d E7B  |d CUS  |d OSU  |d DA$  |d DEBSZ  |d QCL  |d AGLDB  |d OCLCQ  |d VTS  |d OCLCQ  |d STF  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ 
020 |a 9781848167575  |q (electronic bk.) 
020 |a 1848167571  |q (electronic bk.) 
020 |z 9781848167568  |q (hardcover ;  |q alk. paper) 
020 |z 1848167563  |q (hardcover ;  |q alk. paper) 
029 1 |a AU@  |b 000056940507 
029 1 |a AU@  |b 000068150953 
029 1 |a DEBBG  |b BV043783958 
029 1 |a DEBSZ  |b 472860879 
029 1 |a NZ1  |b 16090918 
035 |a (OCoLC)900633207 
050 4 |a QA274.7  |b .T38 2015eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/33  |2 23 
049 |a UAMI 
100 1 |a Tatarinova, Tatiana V.,  |e author. 
245 1 0 |a Nonlinear mixture models :  |b a bayesian approach /  |c Tatiana Tatarinova, University of Glamorgan, UK, Alan Schumitzky, University of Southern California, USA. 
264 1 |a Hackensack, NJ :  |b Imperial College Press,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource (xxiv, 269 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 255-266) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction. 1.1. Bayesian approach. 1.2. Review of applications of mixture models in population pharmacokinetics. 1.3. Review of applications of mixture models to problems in computational biology. 1.4. Outline of the book -- 2. Mathematical description of nonlinear mixture models. 2.1. Fundamental notions of Markov chain Monte Carlo. 2.2. Nonlinear hierarchical models. 2.3. Gibbs sampling. 2.4. Prior distributions: Linear and nonlinear cases -- 3. Label switching and trapping. 3.1. Label switching and permutation invariance. 3.2. Markov chain convergence. 3.3. Random permutation sampler. 3.4. Re-parametrization. 3.5. Stephens' approach: Relabeling strategies. 
505 0 |a 4. Treatment of mixture models with an unknown number of components. 4.1. Introduction. 4.2. Finding the optimal number of components using weighted Kullback-Leibler distance. 4.3. Stephens' approach: Birth-death Markov chain Monte Carlo. 4.4. Kullback-Leibler Markov chain Monte Carlo -- A new algorithmfor finite mixture analysis -- 5. Applications of BDMCMC, KLMCMC, and RPS. 5.1. Galaxy data. 5.2. Simulated nonlinear normal mixture model. 5.3. Linear normal mixture model: Boys and girls. 5.4. Nonlinear pharmacokinetics model and selection of prior distributions. 5.5. Nonlinear mixture models in gene expression studies. 
505 0 |a 6. Nonparametric methods. 6.1. Definition of the basic model. 6.2. Nonparametric maximum likelihood. 6.3. Nonparametric Bayesian approach. 6.4. Gibbs sampler for the Dirichlet process. 6.5. Nonparametric Bayesian examples. 6.6. Technical notes. 6.7. Stick-breaking priors. 6.8. Examples of stick-breaking. 6.9. Maximum likelihood and stick-breaking (A connection between NPML and NPB approaches) -- 7. Bayesian clustering methods. 7.1. Brief review of clustering methods in microarray analysis. 7.2. Application of KLMCMC to gene expression time-series analysis. 7.3. Kullback-Leibler clustering. 7.4. Simulated time-series data with an unknown number of components (Zhou model). 7.5. Transcription start sites prediction. 7.6. Conclusions. 
520 |a This book, written by two mathematicians from the University of Southern California, provides a broad introduction to the important subject of nonlinear mixture models from a Bayesian perspective. It contains background material, a brief description of Markov chain theory, as well as novel algorithms and their applications. It is self-contained and unified in presentation, which makes it ideal for use as an advanced textbook by graduate students and as a reference for independent researchers. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to go further into the subject and explore the research literature. In this book the authors present Bayesian methods of analysis for nonlinear, hierarchical mixture models, with a finite, but possibly unknown, number of components. These methods are then applied to various problems including population pharmacokinetics and gene expression analysis. In population pharmacokinetics, the nonlinear mixture model, based on previous clinical data, becomes the prior distribution for individual therapy. For gene expression data, one application included in the book is to determine which genes should be associated with the same component of the mixture (also known as a clustering problem). The book also contains examples of computer programs written in BUGS. This is the first book of its kind to cover many of the topics in this field. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Markov processes. 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Nonparametric statistics. 
650 0 |a Multivariate analysis. 
650 2 |a Markov Chains 
650 2 |a Statistics, Nonparametric 
650 2 |a Multivariate Analysis 
650 6 |a Processus de Markov. 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Statistique non paramétrique. 
650 6 |a Analyse multivariée. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Multivariate analysis.  |2 fast  |0 (OCoLC)fst01029105 
650 7 |a Nonparametric statistics.  |2 fast  |0 (OCoLC)fst01038853 
700 1 |a Schumitzky, Alan,  |e author. 
776 0 8 |i Print version:  |a Tatarinova, Tatiana V.  |t Nonlinear mixture models.  |d London : Imperial College Press, [2015]  |z 9781848167568  |w (DLC) 2014038898  |w (OCoLC)701806866 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=942208  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28178389 
938 |a ebrary  |b EBRY  |n ebr11011093 
938 |a EBSCOhost  |b EBSC  |n 942208 
938 |a YBP Library Services  |b YANK  |n 12247728 
994 |a 92  |b IZTAP