Festschrift Masatoshi Fukushima : in honor of Masatoshi Fukushima's Sanju /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Jersey :
World Scientific,
2014.
|
Colección: | Interdisciplinary mathematical sciences ;
volume 17 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Professor Fukushima's Work
- 1. The mathematical work of Masatoshi Fukushima
- An Essay
- References
- Further References
- 2. Bibliography of Masatoshi Fukushima
- Expository Writing
- Seminar on Probability (in Japanese)
- Monographs and Textbooks
- Contributions
- 3. Quasi regular Dirichlet forms and the stochastic quantization problem
- 1. Introduction
- 2. Symmetric quasi regular Dirichlet forms
- 3. Classical Dirichlet forms on Banach spaces and weak solutions to SDE
- 4. Applications to stochastic quantization in finite and infinite volume4.1. Finite volume
- 4.2. Infinite volume
- 4.3. Ergodicity
- 4.4. Additional remarks
- 5. Further developments
- 6. Acknowledgements
- References
- 4. Comparison of quenched and annealed invariance principles for random conductance model: Part II
- 1. Introduction
- 2. Description of the environment
- 3. Preliminary results
- 4. Estimates on the process Xn,2
- 5. Acknowledgements
- References
- 5. Some historical aspects of error calculus by Dirichlet forms
- 1. Introduction2. Gauss inventor of the carre du champ operator?
- 3. Why should we ask the quadratic form to be closed?
- 4. Dirichlet form generated by an approximation
- 5. Small errors what does it mean?
- 6. Trails of research
- References
- 6. Stein's method, Malliavin calculus, Dirichlet forms and the fourth moment theorem
- 1. Introduction
- 2. Stein's method
- 2.1. How it began
- 2.2. A general framework
- 2.3. Normal approximation
- 3. Malliavin calculus
- 3.1. A brief history
- 3.2. Malliavin derivatives
- 3.3. Wiener chaos and multiple integrals3.4. Main properties of Malliavin operators
- 4. Connecting Stein's method with Malliavin calculus
- 5. The Nualart-Peccati criterion of the fourth moment and Ledoux's idea
- 5.1. Some history
- 5.2. Overview of the proof of Nourdin and Peccati
- 5.3. About Ledoux's generalization
- 6. The general fourth moment Theorem for Dirichlet forms
- 6.1. The Dirichlet structures
- 6.2. Fourth moment theorem for Dirichlet structures with (H1) and (H2)
- 6.3. Dirichlet structures with (H1) and (H2)
- 7. Acknowledgments