|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn900409185 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
150119s2014 nyu o 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d OCLCF
|d YDXCP
|d EBLCP
|d AGLDB
|d OCLCQ
|d JBG
|d VTS
|d STF
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 914151602
|a 923677789
|a 928197090
|
020 |
|
|
|a 9781634632331
|q (electronic bk.)
|
020 |
|
|
|a 1634632338
|q (electronic bk.)
|
020 |
|
|
|z 9781634632218
|
020 |
|
|
|z 1634632214
|
029 |
1 |
|
|a AU@
|b 000054572779
|
029 |
1 |
|
|a DEBBG
|b BV043031067
|
029 |
1 |
|
|a DEBSZ
|b 429955162
|
035 |
|
|
|a (OCoLC)900409185
|z (OCoLC)914151602
|z (OCoLC)923677789
|z (OCoLC)928197090
|
050 |
|
4 |
|a QA314
|b .F725 2014eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.83
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Fractional calculus :
|b applications /
|c editors, Roy Abi Zeid Daou and Xavier Moreau (Lebanese German University, Sahel Alma Campus, Keserwane, Lebanon, and University of Bordeaux).
|
264 |
|
1 |
|a Hauppauge, New York :
|b Nova Science Publishers, Inc.,
|c [2014]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics Research Developments
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a FRACTIONAL CALCULUS: APPLICATIONS; FRACTIONAL CALCULUS: APPLICATIONS; LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA; CONTENTS; FOREWORD; PREFACE; Chapter 1: THE HEURISTIC POWER OF THE NON INTEGERDIFFERENTIAL OPERATOR IN PHYSICS:FROM CHAOS TO EMERGENCE, AUTO-ORGANISATIONS AND HOLISTIC RULES; Abstract; 1. Introduction; 2. A Nice Equation for an Heuristic Power; 3. SWOT Method, Non Integer Diff-Integral and Co-Dimension; 4. The Generalization of the Exponential Concept; 5. Diffusion Under Field; 6. Riemann Zeta Function and Non-Integer Differentiation; 7. Auto Organization and Emergence.
|
505 |
8 |
|
|a ConclusionAcknowledgment; References; Chapter 2: DYNAMICS OF FRACTIONAL ORDER CHAOTIC SYSTEMS; Abstract; 1. Introduction; 2. Preliminaries; 3. The Model; 4. Numerical Simulations; 5. Synchronization; 6. Conclusion; Acknowledgments; References; Chapter 3: PRESSURE CONTROL OF CNG ENGINESBY NON-INTEGER ORDER CONTROLLERS:A NEW TREND IN APPLICATION OF FRACTIONALCALCULUS TO AUTOMOTIVE SYSTEMS; Abstract; 1. Introduction: A Short Literature Review; 2. The Injection System; 3. The Control Strategy: Switching of Fractional Order Controllers by Gain Scheduling; 4. Fractional Order Control Design.
|
505 |
8 |
|
|a 5. Simulation Results6. Conclusion; Acknowledgment; References; Chapter 4: LINEAR INTEGER ORDER SYSTEM CONTROL BY FRACTIONAL PI-STATE FEEDBACK; Abstract; Introduction; 1. Basic Definitions and Preliminaries; 2. Pole Placement Based Design of the Fractional Pi-State Feedback; 3. Bode's Ideal Transfer Function Based Design of FractionalPi-State Feedback; 5. Inverted Pendulum-Cart System Modeling and Swing-UpControl; 5. Implementation of the Fractional PI-State Feedbackto Stabilize the Inverted Pendulum-Cart System; Conclusion; Acknowledgments; References.
|
505 |
8 |
|
|a Chapter 5: FROM THE FORMAL CONCEPT ANALYSISTO THE NUMERICAL SIMULATION OF THE THERMALDIFFUSION PHENOMENA IN A FINITE MEDIUMAbstract; 1. Context and Problematic; 2. Parameters and Definitions; 3. Semi-Infinite Plane; 4. Responses in the Semi-Infinite Plane; 5. Finite Plane; 6. Responses in Finite Plane; 7. Simulink Responses; Conclusion; References; Chapter 6: TEMPERATURE CONTROL OF A DIFFUSIVE MEDIUMUSING THE CRONE APPROACH; Abstract; 1. Introduction; 2. Modelling; 3. Temperature Control; 4. Conclusion; References.
|
505 |
8 |
|
|a Chapter 7: ADAPTIVE SECOND-ORDER FRACTIONALSLIDING MODE CONTROL WITH APPLICATIONTO WATER TANKS LEVEL CONTROLAbstract; 1. Introduction; 2. Preliminaries; 3. Second Order Sliding Mode Control Strategy; 4. Adaptation Law Synthesis; 5. Numerical Studies; Conclusion; References; Chapter 8: FEATURES OF FRACTIONAL OPERATORSINVOLVING FRACTIONAL DERIVATIVESAND THEIR APPLICATIONS TO THE PROBLEMSOF MECHANICS OF SOLIDS; Abstract; 1. Introduction; 2. Rabotnov's Fractional Operators and Main Formulas of Algebra of Fractional Operators; 3. Generalized Rabotnov OperatorsGeneralized.
|
520 |
|
|
|a After presenting the first volume of this two-volume book, presenting a lot of mathematical and theoretical studies and research related to non-integer calculus, the second volume illustrates applications related to this domain. This volume is made up of 11 chapters. The first chapter presents the heuristic power of the non-integer differential operators in physics starting from the chaos to the emergence, the auto-organizations and the holistic rules. The second chapter shows the dynamics of the fractional order chaotic systems along with some applications. The third chapter represents the pr.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Fractional calculus.
|
650 |
|
0 |
|a Calculus.
|
650 |
|
6 |
|a Dérivées fractionnaires.
|
650 |
|
6 |
|a Calcul infinitésimal.
|
650 |
|
7 |
|a calculus.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Calculus
|2 fast
|
650 |
|
7 |
|a Fractional calculus
|2 fast
|
700 |
1 |
|
|a Abi Zeid Daou, Roy,
|e editor.
|
700 |
1 |
|
|a Moreau, Xavier,
|d 1966-
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Fractional calculus
|z 9781634632218
|w (DLC) 2014038042
|w (OCoLC)891369594
|
830 |
|
0 |
|a Mathematics research developments series.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=940923
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL2084556
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 940923
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12092701
|
994 |
|
|
|a 92
|b IZTAP
|