Financial modeling /
This book is the standard text for explaining the implementation of financial models in Excel. As in previous editions, this fourth edition maintains the "cookbook" features and Excel dependence; it explains basic and advanced models in the areas of corporate finance, portfolio management,...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Massachusetts :
The MIT Press,
[2014]
|
Edición: | Fourth edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 0.1. Data Tables
- 0.2. What Is Getformula?
- 0.3. How to Put Getformula into Your Excel Notebook
- 0.4. Saving the Excel Workbook: Windows
- 0.5. Saving the Excel Workbook: Mac
- 0.6. Do You Have to Put Getformula into Each Excel Workbook?
- 0.7.A Shortcut to Use Getformula
- 0.8. Recording Getformula: The Windows Case
- 0.9. Recording Getformula: The Mac Case
- 1. Basic Financial Calculations
- 1.1. Overview
- 1.2. Present Value and Net Present Value
- 1.3. The Internal Rate of Return (IRR) and Loan Tables
- 1.4. Multiple Internal Rates of Return
- 1.5. Flat Payment Schedules
- 1.6. Future Values and Applications
- 1.7.A Pension Problem-Complicating the Future Value Problem
- 1.8. Continuous Compounding
- 1.9. Discounting Using Dated Cash Flows
- Exercises
- 2. Corporate Valuation Overview
- 2.1. Overview
- 2.2. Four Methods to Compute Enterprise Value (EV).
- Note continued: 2.3. Using Accounting Book Values to Value a Company: The Firm's Accounting Enterprise Value
- 2.4. The Efficient Markets Approach to Corporate Valuation
- 2.5. Enterprise Value (EV) as the Present Value of the Free Cash Flows: DCF "Top Down" Valuation
- 2.6. Free Cash Flows Based on Consolidated Statement of Cash Flows (CSCF)
- 2.7. ABC Corp., Consolidated Statement of Cash Flows (CSCF)
- 2.8. Free Cash Flows Based on Pro Forma Financial Statements
- 2.9. Summary
- Exercises
- 3. Calculating the Weighted Average Cost of Capital (WACC)
- 3.1. Overview
- 3.2.Computing the Value of the Firm's Equity, E
- 3.3.Computing the Value of the Firm's Debt, D
- 3.4.Computing the Firm's Tax Rate, Tc
- 3.5.Computing the Firm's Cost of Debt, rD
- 3.6. Two Approaches to Computing the Firm's Cost of Equity, rE
- 3.7. Implementing the Gordon Model for rE
- 3.8. The CAPM: Computing the Beta.
- Note continued: 3.9. Using the Security Market Line (SML) to Calculate Merck's Cost of Equity, rE
- 3.10. Three Approaches to Computing the Expected Return on the Market, E(rM)
- 3.11. What's the Risk-Free Rate rf in the CAPM?
- 3.12.Computing the WACC, Three Cases
- 3.13.Computing the WACC for Merck (MRK)
- 3.14.Computing the WACC for Whole Foods (WFM)
- 3.15.Computing the WACC for Caterpillar (CAT)
- 3.16. When Don't the Models Work?
- 3.17. Summary
- Exercises
- 4. Valuation Based on the Consolidated Statement of Cash Flows
- 4.1. Overview
- 4.2. Free Cash Flow (FCF): Measuring the Cash Produced by the Business
- 4.3.A Simple Example
- 4.4. Merck: Reverse Engineering the Market Value
- 4.5. Summary
- Exercise
- 5. Pro Forma Financial Statement Modeling
- 5.1. Overview
- 5.2. How Financial Models Work: Theory and an Initial Example
- 5.3. Free Cash Flow (FCF): Measuring the Cash Produced by the Business.
- Note continued: 5.4. Using the Free Cash Flow (FCF) to Value the Firm and Its Equity
- 5.5. Some Notes on the Valuation Procedure
- 5.6. Alternative Modeling of Fixed Assets
- 5.7. Sensitivity Analysis
- 5.8. Debt as a Plug
- 5.9. Incorporating a Target Debt/Equity Ratio into a Pro Forma
- 5.10. Project Finance: Debt Repayment Schedules
- 5.11. Calculating the Return on Equity
- 5.12. Tax Loss Carryforwards
- 5.13. Summary
- Exercises
- 6. Building a Pro Forma Model: The Case of Caterpillar
- 6.1. Overview
- 6.2. Caterpillar's Financial Statements, 2007-2011
- 6.3. Analyzing the Financial Statements
- 6.4.A Model for Caterpillar
- 6.5. Using the Model to Value Caterpillar
- 6.6. Summary
- 7. Financial Analysis of Leasing
- 7.1. Overview
- 7.2.A Simple but Misleading Example
- 7.3. Leasing and Firm Financing-The Equivalent-Loan Method
- 7.4. The Lessor's Problem: Calculating the Highest Acceptable Lease Rental
- 7.5. Asset Residual Value and Other Considerations.
- Note continued: 7.6. Leveraged Leasing
- 7.7.A Leveraged Lease Example
- 7.8. Summary
- Exercises
- 8. Portfolio Models-Introduction
- 8.1. Overview
- 8.2.Computing Returns for Apple (AAPL) and Google (GOOG)
- 8.3. Calculating Portfolio Means and Variances
- 8.4. Portfolio Mean and Variance-Case of N Assets
- 8.5. Envelope Portfolios
- 8.6. Summary
- Exercises
- Appendix 8.1: Adjusting for Dividends
- Appendix 8.2: Continuously Compounded Versus Geometric Returns
- 9. Calculating Efficient Portfolios
- 9.1. Overview
- 9.2. Some Preliminary Definitions and Notation
- 9.3. Five Propositions on Efficient Portfolios and the CAPM
- 9.4. Calculating the Efficient Frontier: An Example
- 9.5. Finding Efficient Portfolios in One Step
- 9.6. Three Notes on the Optimization Procedure
- 9.7. Finding the Market Portfolio: The Capital Market Line (CML)
- 9.8. Testing the SML-Implementing Propositions 3-5
- 9.9. Summary
- Exercises
- Mathematical Appendix.
- Note continued: 10. Calculating the Variance-Covariance Matrix
- 10.1. Overview
- 10.2.Computing the Sample Variance-Covariance Matrix
- 10.3. The Correlation Matrix
- 10.4.Computing the Global Minimum Variance Portfolio (GMVP)
- 10.5. Four Alternatives to the Sample Variance-Covariance Matrix
- 10.6. Alternatives to the Sample Variance-Covariance: The Single-Index Model (SIM)
- 10.7. Alternatives to the Sample Variance-Covariance: Constant Correlation
- 10.8. Alternatives to the Sample Variance-Covariance: Shrinkage Methods
- 10.9. Using Option Information to Compute the Variance Matrix
- 10.10. Which Method to Compute the Variance-Covariance Matrix?
- 10.11. Summary
- Exercises
- 11. Estimating Betas and the Security Market Line
- 11.1. Overview
- 11.2. Testing the SML
- 11.3. Did We Learn Something?
- 11.4. The Non-Efficiency of the "Market Portfolio"
- 11.5. So What's the Real Market Portfolio? How Can We Test the CAPM?
- 11.6. Using Excess Returns.
- Note continued: 11.7. Summary: Does the CAPM Have Any Uses?
- Exercises
- 12. Efficient Portfolios Without Short Sales
- 12.1. Overview
- 12.2.A Numerical Example
- 12.3. The Efficient Frontier with Short-Sale Restrictions
- 12.4.A VBA Program for the Efficient Frontier Without Short Sales
- 12.5. Other Position Restrictions
- 12.6. Summary
- Exercise
- 13. The Black-Litterman Approach to Portfolio Optimization
- 13.1. Overview
- 13.2.A Naive Problem
- 13.3. Black and Litterman's Solution to the Optimization Problem
- 13.4. BL Step 1: What Does the Market Think?
- 13.5. BL Step 2: Introducing Opinions-What Does Joanna Think?
- 13.6. Using Black-Litterman for International Asset Allocation
- 13.7. Summary
- Exercises
- 14. Event Studies
- 14.1. Overview
- 14.2. Outline of an Event Study
- 14.3. An Initial Event Study: Procter & Gamble Buys Gillette
- 14.4.A Fuller Event Study: Impact of Earnings Announcements on Stock Prices.
- Note continued: 14.5. Using a Two-Factor Model of Returns for an Event Study
- 14.6. Using Excel's Offset Function to Locate a Regression in a Data Set
- 14.7. Summary
- 15. Introduction to Options
- 15.1. Overview
- 15.2. Basic Option Definitions and Terminology
- 15.3. Some Examples
- 15.4. Option Payoff and Profit Patterns
- 15.5. Option Strategies: Payoffs from Portfolios of Options and Stocks
- 15.6. Option Arbitrage Propositions
- 15.7. Summary
- Exercises
- 16. The Binomial Option Pricing Model
- 16.1. Overview
- 16.2. Two-Date Binomial Pricing
- 16.3. State Prices
- 16.4. The Multi-Period Binomial Model
- 16.5. Pricing American Options Using the Binomial Pricing Model
- 16.6. Programming the Binomial Option Pricing Model in VBA
- 16.7. Convergence of Binomial Pricing to the Black-Scholes Price
- 16.8. Using the Binomial Model to Price Employee Stock Options
- 16.9. Using the Binomial Model to Price Non-Standard Options: An Example
- 16.10. Summary
- Exercises.
- Note continued: 17. The Black-Scholes Model
- 17.1. Overview
- 17.2. The Black-Scholes Model
- 17.3. Using VBA to Define a Black-Scholes Pricing Function
- 17.4. Calculating the Volatility
- 17.5.A VBA Function to Find the Implied Volatility
- 17.6. Dividend Adjustments to the Black-Scholes
- 17.7. Using the Black-Scholes Formula to Price Structured Securities
- 17.8. Bang for the Buck with Options
- 17.9. The Black (1976) Model for Bond Option Valuation
- 17.10. Summary
- Exercises
- 18. Option Greeks
- 18.1. Overview
- 18.2. Defining and Computing the Greeks
- 18.3. Delta Hedging a Call
- 18.4. Hedging a Collar
- 18.5. Summary
- Exercises
- Appendix: VBA for Greeks
- 19. Real Options
- 19.1. Overview
- 19.2.A Simple Example of the Option to Expand
- 19.3. The Abandonment Option
- 19.4. Valuing the Abandonment Option as a Series of Puth
- 19.5. Valuing a Biotechnology Project
- 19.6. Summary
- Exercises
- 20. Duration
- 20.1. Overview
- 20.2. Two Examples.
- Note continued: 20.3. What Does Duration Mean?
- 20.4. Duration Patterns
- 20.5. The Duration of a Bond with Uneven Payments
- 20.6. Non-Flat Term Structures and Duration
- 20.7. Summary
- Exercises
- 21. Immunization Strategies
- 21.1. Overview
- 21.2.A Basic Simple Model of Immunization
- 21.3.A Numerical Example
- 21.4. Convexity: A Continuation of Our Immunization Experiment
- 21.5. Building a Better Mousetrap
- 21.6. Summary
- Exercises
- 22. Modeling the Term Structure
- 22.1. Overview
- 22.2. Basic Example
- 22.3. Several Bonds with the Same Maturity
- 22.4. Fitting a Functional Form to the Term Structure
- 22.5. The Properties of the Nelson-Siegel Term Structure
- 22.6. Term Structure for Treasury Notes
- 22.7. An Additional Computational Improvement
- 22.8. Nelson-Siegel-Svensson Model
- 22.9. Summary
- Appendix: VBA Functions Used in This Chapter
- 23. Calculating Default-Adjusted Expected Bond Returns
- 23.1. Overview.
- Note continued: 23.2. Calculating the Expected Return in a One-Period Framework
- 23.3. Calculating the Bond Expected Return in a Multi-Period Framework
- 23.4.A Numerical Example
- 23.5. Experimenting with the Example
- 23.6.Computing the Bond Expected Return for an Actual Bond
- 23.7. Semiannual Transition Matrices
- 23.8.Computing Bond Beta
- 23.9. Summary
- Exercises
- 24. Generating and Using Random Numbers
- 24.1. Overview
- 24.2. Rand() and Rnd: The Excel and VBA Random-Number Generators
- 24.3. Testing Random-Number Generators
- 24.4. Generating Normally Distributed Random Numbers
- 24.5. Norm. Inv: Another Way to Generate Normal Deviates
- 24.6. Generating Correlated Random Numbers
- 24.7. What's Our Interest in Correlation? A Small Case
- 24.8. Multiple Random Variables with Correlation: The Cholesky Decomposition
- 24.9. Multivariate Normal with Non-Zero Means
- 24.10. Multivariate Uniform Simulations
- 24.11. Summary
- Exercises.
- Note continued: 25. An Introduction to Monte Carlo Methods
- 25.1. Overview
- 25.2.Computing IT Using Monte Carlo
- 25.3. Writing a VBA Program
- 25.4. Another Monte Carlo Problem: Investment and Retirement
- 25.5.A Monte Carlo Simulation of the Investment Problem
- 25.6. Summary
- Exercises
- 26. Simulating Stock Prices
- 26.1. Overview
- 26.2. What Do Stock Prices Look Like?
- 26.3. Lognormal Price Distributions and Geometric Diffusions
- 26.4. What Does the Lognormal Distribution Look Like?
- 26.5. Simulating Lognormal Price Paths
- 26.6. Technical Analysis
- 26.7. Calculating the Parameters of the Lognormal Distribution from Stock Prices
- 26.8. Summary
- Exercises
- 27. Monte Carlo Simulations for Investments
- 27.1. Overview
- 27.2. Simulating Price and Returns for a Single Stock
- 27.3. Portfolio of Two Stocks
- 27.4. Adding a Risk-Free Asset
- 27.5. Multiple Stock Portfolios
- 27.6. Simulating Savings for Pensions
- 27.7. Beta and Return
- 27.8. Summary.
- Note continued: Exercises
- 28. Value at Risk (VaR)
- 28.1. Overview
- 28.2.A Really Simple Example
- 28.3. Defining Quantiles in Excel
- 28.4.A Three-Asset Problem: The Importance of the Variance-Covariance Matrix
- 28.5. Simulating Data: Bootstrapping
- Appendix: How to Bootstrap: Making a Bingo Card in Excel
- 29. Simulating Options and Option Strategies
- 29.1. Overview
- 29.2. Imperfect but Cashless Replication of a Call Option
- 29.3. Simulating Portfolio Insurance
- 29.4. Some Properties of Portfolio Insurance
- 29.5. Digression: Insuring Total Portfolio Returns
- 29.6. Simulating a Butterfly
- 29.7. Summary
- Exercises
- 30. Using Monte Carlo Methods for Option Pricing
- 30.1. Overview
- 30.2. Pricing a Plain-Vanilla Call Using Monte Carlo Methods
- 30.3. State Prices, Probabilities, and Risk Neutrality
- 30.4. Pricing a Call Using the Binomial Monte Carlo Model
- 30.5. Monte Carlo Plain-Vanilla Call Pricing Converges to Black-Scholes.
- Note continued: 30.6. Pricing Asian Options
- 30.7. Pricing Asian Options with a VBA Program
- 30.8. Pricing Barrier Options with Monte Carlo
- 30.9. Using VBA and Monte Carlo to Price a Barrier Option
- 30.10. Summary
- Exercises
- 31. Data Tables
- 31.1. Overview
- 31.2. An Example
- 31.3. Setting Up a One-Dimensional Data Table
- 31.4. Building a Two-Dimensional Data Table
- 31.5. An Aesthetic Note: Hiding the Formula Cells
- 31.6. Excel Data Tables Are Arrays
- 31.7. Data Tables on Blank Cells (Advanced)
- 31.8. Data Tables Can Stop Your Computer
- Exercises
- 32. Matrices
- 32.1. Overview
- 32.2. Matrix Operations
- 32.3. Matrix Inverses
- 32.4. Solving Systems of Simultaneous Linear Equations
- 32.5. Some Homemade Matrix Functions
- Exercises
- 33. Excel Functions
- 33.1. Overview
- 33.2. Financial Functions
- 33.3. Dates and Date Functions
- 33.4. The Functions XIRR, XNPV
- 33.5. Statistical Functions
- 33.6. Regressions with Excel.
- Note continued: 33.7. Conditional Functions
- 33.8. Large and Rank, Percentile, and PercentRank
- 33.9. Count, CountA, CountIf, CountIfs, AverageIf, AverageIfs
- 33.10. Boolean Functions
- 33.11. Offset
- 34. Array Functions
- 34.1. Overview
- 34.2. Some Built-In Excel Array Functions
- 34.3. Homemade Array Functions
- 34.4. Array Formulas with Matrices
- Exercises
- 35. Some Excel Hints
- 35.1. Overview
- 35.2. Fast Copy: Filling in Data Next to Filled-In Column
- 35.3. Filling Cells with a Series
- 35.4. Multi-Line Cells
- 35.5. Multi-Line Cells with Text Formulas
- 35.6. Writing on Multiple Spreadsheets
- 35.7. Moving Multiple Sheets of an Excel Notebook
- 35.8. Text Functions in Excel
- 35.9. Chart Titles That Update
- 35.10. Putting Greek Symbols in Cells
- 35.11. Superscripts and Subscripts
- 35.12. Named Cells
- 35.13. Hiding Cells (in Data Tables and Other Places)
- 35.14. Formula Auditing
- 35.15. Formatting Millions as Thousands.
- Note continued: 35.16. Excel's Personal Notebook: Automating Frequent Procedures
- 36. User-Defined Functions with VBA
- 36.1. Overview
- 36.2. Using the VBA Editor to Build a User-Defined Function
- 36.3. Providing Help for User-Defined Functions in the Function Wizard
- 36.4. Saving Excel Workbook with VBA Content
- 36.5. Fixing Mistakes in VBA
- 36.6. Conditional Execution: Using If Statements in VBA Functions
- 36.7. The Boolean and Comparison Operators
- 36.8. Loops
- 36.9. Using Excel Functions in VBA
- 36.10. Using User-Defined Functions in User-Defined Functions
- Exercises
- Appendix: Cell Errors in Excel and VBA
- 37. Variables and Arrays
- 37.1. Overview
- 37.2. Defining Function Variables
- 37.3. Arrays and Excel Ranges
- 37.4. Simple VBA Arrays
- 37.5. Multidimensional Arrays
- 37.6. Dynamic Arrays and the ReDim Statement
- 37.7. Array Assignment
- 37.8. Variants Containing an Array
- 37.9. Arrays as Parameters to Functions
- 37.10. Using Types.
- Note continued: 37.11. Summary
- Exercises
- 38. Subroutines and User Interaction
- 38.1. Overview
- 38.2. Subroutines
- 38.3. User Interaction
- 38.4. Using Subroutines to Change the Excel Workbook
- 38.5. Modules
- 38.6. Summary
- Exercises
- 39. Objects and Add-Ins
- 39.1. Overview
- 39.2. Introduction to Worksheet Objects
- 39.3. The Range Object
- 39.4. The With Statement
- 39.5. Collections
- 39.6. Names
- 39.7. Add-Ins and Integration
- 39.8. Summary
- Exercises.