Cargando…

Numerical structural analysis /

As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: O'Hara, Steven E. (Autor), Ramming, Carisa H. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2015.
Colección:Momentum Press sustainable structural systems collection.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn900011556
003 OCoLC
005 20231017213018.0
006 m eo d
007 cr cn||||m|||a
008 150110s2015 nyua foab 001 0 eng d
040 |a NYMPP  |b eng  |e rda  |e pn  |c NYMPP  |d OCLCO  |d MYG  |d N$T  |d OCLCF  |d YDXCP  |d ZCU  |d OTZ  |d UPM  |d COCUF  |d CNNOR  |d STF  |d LOA  |d CUY  |d ICG  |d K6U  |d VT2  |d U3W  |d CNCEN  |d OCLCQ  |d G3B  |d LVT  |d S8J  |d S9I  |d D6H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 960717450 
020 |a 9781606504895  |q (electronic bk.) 
020 |a 1606504894  |q (electronic bk.) 
020 |z 9781606504888  |q (print) 
024 7 |a 10.5643/9781606504895  |2 doi 
029 1 |a AU@  |b 000055036103 
029 1 |a DEBBG  |b BV042994493 
035 |a (OCoLC)900011556  |z (OCoLC)960717450 
050 4 |a TA645  |b .O325 2015 
072 7 |a TEC  |x 009020  |2 bisacsh 
082 0 4 |a 624.171  |2 23 
049 |a UAMI 
100 1 |a O'Hara, Steven E.,  |e author. 
245 1 0 |a Numerical structural analysis /  |c Steven E. O'Hara, Carisa H. Ramming. 
264 1 |a New York [New York] (222 East 46th Street, New York, NY 10017) :  |b Momentum Press,  |c 2015. 
300 |a 1 online resource (1 PDF (xix, 277 pages)) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Sustainable structural systems collection 
500 |a Title from PDF title page (viewed on January 10, 2015). 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Roots of algebraic and transcendental equations -- 1.1 Equations -- 1.2 Polynomials -- 1.3 Descartes' rule -- 1.4 Synthetic division -- 1.5 Incremental search method -- 1.6 Refined incremental search method -- 1.7 Bisection method -- 1.8 Method of false position or linear interpolation -- 1.9 Secant method -- 1.10 Newton-Raphson method or Newton's tangent -- 1.11 Newton's second order method -- 1.12 Graeffe's root squaring method -- 1.13 Bairstow's method -- References. 
505 8 |a 2. Solutions of simultaneous linear algebraic equations using matrix algebra -- 2.1 Simultaneous equations -- 2.2 Matrices -- 2.3 Matrix operations -- 2.4 Cramer's rule -- 2.5 Method of adjoints or cofactor method -- 2.6 Gaussian elimination method -- 2.7 Gauss-Jordan elimination method -- 2.8 Improved Gauss-Jordan elimination method -- 2.9 Cholesky decomposition method -- 2.10 Error equations -- 2.11 Matrix inversion method -- 2.12 Gauss-Seidel iteration method -- 2.13 Eigenvalues by Cramer's rule -- 2.14 Faddeev-Leverrier method -- 2.15 Power method or iteration method -- References. 
505 8 |a 3. Numerical integration and differentiation -- 3.1 Trapezoidal rule -- 3.2 Romberg integration -- 3.3 Simpson's rule -- 3.4 Gaussian quadrature -- 3.5 Double integration by Simpson's one-third rule -- 3.6 Double integration by Gaussian quadrature -- 3.7 Taylor series polynomial expansion -- 3.8 Difference operators by Taylor series expansion -- 3.9 Numeric modeling with difference operators -- 3.10 Partial differential equation difference operators -- 3.11 Numeric modeling with partial difference operators -- References. 
505 8 |a 4. Matrix structural stiffness -- 4.1 Matrix transformations and coordinate systems -- 4.2 Rotation matrix -- 4.3 Transmission matrix -- 4.4 Area moment method -- 4.5 Conjugate beam method -- 4.6 Virtual work -- 4.7 Castigliano's theorems -- 4.8 Slope-deflection method -- 4.9 Moment-distribution method -- 4.10 Elastic member stiffness, X-Z system -- 4.11 Elastic member stiffness, X-Y system -- 4.12 Elastic member stiffness, 3-D system -- 4.13 Global joint stiffness -- References. 
505 8 |a 5. Advanced structural stiffness -- 5.1 Member end releases, X-Z system -- 5.2 Member end releases, X-Y system -- 5.3 Member end releases, 3-D system -- 5.4 Non-prismatic members -- 5.5 Shear stiffness, X-Z system -- 5.6 Shear stiffness, X-Y system -- 5.7 Shear stiffness, 3-D system -- 5.8 Geometric stiffness, X-Y system -- 5.9 Geometric stiffness, X-Z system -- 5.10 Geometric stiffness, 3-D system -- 5.11 Geometric and shear stiffness -- 5.12 Torsion -- 5.13 Sub-structuring -- References. 
505 8 |a About the authors -- Index. 
520 3 |a As structural engineers move further into the age of digital computation and rely more heavily on computers to solve problems, it remains paramount that they understand the basic mathematics and engineering principles used to design and analyze building structures. The analysis of complex structural systems involves the knowledge of science, technology, engineering, and math to design and develop efficient and economical buildings and other structures. The link between the basic concepts and application to real world problems is one of the most challenging learning endeavors that structural engineers face. A thorough understanding of the analysis procedures should lead to successful structures. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Structural analysis (Engineering)  |x Mathematical models. 
650 6 |a Théorie des constructions  |x Modèles mathématiques. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Civil  |x General.  |2 bisacsh 
650 7 |a Structural analysis (Engineering)  |x Mathematical models  |2 fast 
653 |a adjoint matrix 
653 |a algebraic equations 
653 |a area moment 
653 |a beam deflection 
653 |a carry- over factor, 
653 |a castigliano's theorems 
653 |a cofactor matrix 
653 |a column matrix 
653 |a complex conjugate pairs 
653 |a complex roots 
653 |a conjugate beam 
653 |a conjugate pairs 
653 |a convergence 
653 |a diagonal matrix 
653 |a differentiation 
653 |a distinct roots 
653 |a distribution factor 
653 |a eigenvalues 
653 |a elastic stiffness 
653 |a enke roots 
653 |a extrapolation 
653 |a flexural stiffness 
653 |a geometric stiffness 
653 |a homogeneous 
653 |a identity matrix 
653 |a integer 
653 |a integration 
653 |a interpolation 
653 |a inverse 
653 |a joint stiffness factor 
653 |a linear algebraic equations 
653 |a lower triangular matrix 
653 |a matrix 
653 |a matrix minor 
653 |a member end release 
653 |a member relative stiffness factor 
653 |a member stiffness factor 
653 |a moment-distribution 
653 |a non-homogeneous 
653 |a non-prismatic members 
653 |a partial pivoting 
653 |a pivot coefficient 
653 |a pivot equation 
653 |a polynomials 
653 |a principal diagonal 
653 |a roots 
653 |a rotation 
653 |a rotational stiffness 
653 |a row matrix 
653 |a second-order stiffness 
653 |a shear stiffness 
653 |a slope-deflection 
653 |a sparse matrix 
653 |a square matrix 
653 |a stiffness matrix 
653 |a structural flexibility 
653 |a structural stiffness 
653 |a symmetric transformation 
653 |a torsional stiffness 
653 |a transcendental equations 
653 |a transformations 
653 |a transmission 
653 |a transposed matrix 
653 |a triangular matrix 
653 |a upper triangular matrix 
653 |a virtual work 
653 |a visual integration 
700 1 |a Ramming, Carisa H.,  |e author. 
776 0 8 |i Print version:  |z 9781606504888 
830 0 |a Momentum Press sustainable structural systems collection. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=929571  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 929571 
938 |a Momentum Press  |b NYMP  |n 9781606504895 
938 |a YBP Library Services  |b YANK  |n 12219127 
994 |a 92  |b IZTAP