Particles in the coastal ocean : theory and applications /
Summarizes the modeling of the transport, evolution and fate of particles in the coastal ocean for advanced students and researchers.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-title
- Dedication
- Title page
- Copyright information
- Table of contents
- About the authors
- Preface
- Acknowledgments
- List of acronyms
- Definitions and notation
- Introduction and scope
- Part I Background
- 1 The Coastal Ocean
- 1.1 Typical Motions and Scales
- 1.2 Particle Simulation
- 1.2.1 Motion
- 1.2.2 Rates
- 1.2.3 Gather, Scatter
- 1.2.4 Simulation
- 1.2.5 Aggregation and Identity
- 2 Drifters and Their Numerical Simulation
- 2.1 Introduction
- 2.2 Drifter Technology
- 2.2.1 Design
- 2.2.2 Communication
- 2.2.3 Quality Control
- 2.3 Particle Tracking
- 2.3.1 Basic Lagrangian Model
- 2.3.2 Practical Issues
- 2.4 Model Validation with Drifters
- 2.4.1 Field Experience
- 2.5 Drifter Applications
- 2.5.1 Drifter Assimilation
- 3 Probability and Statistics
- A Primer
- 3.1 Basics
- Random Numbers
- 3.1.1 Continuous Distributions: f and F
- 3.1.2 Properties: Survival, Hazard Rate
- 3.1.3 Properties: Mean, Variance, Moments
- 3.1.4 Properties: Median, Mode, Quartile
- 3.1.5 Properties: Other Means
- 3.1.6 Bounding Theorems
- 3.1.7 Discrete Distributions: Pi and Fj
- 3.2 Some Common Distributions
- 3.2.1 Continuous Distributions
- 3.2.2 Discrete Distributions
- 3.2.3 Importance of G, U, B, Pois
- 3.2.4 The Central Limit Theorem
- 3.3 Generating Random Numbers
- 3.3.1 General Methods
- 3.3.2 Some Specific Deviates
- 3.4 Sampling
- Finite N
- 3.4.1 Sample Statistics
- 3.4.2 Sample Mean
- 3.4.3 Sample Variance
- 3.4.4 Recap
- 3.5 Covariance
- 3.5.1 Definitions
- 3.5.2 Correlation and Autocorrelation
- 3.5.3 Autocorrelated Time Series
- 3.5.3.1 Separation-Based Covariance and Correlogram
- 3.5.3.2 Correlogram and Impulse Response
- 3.5.4 Autocorrelated Eulerian Fields
- 3.5.5 Generating Covariance
- 3.5.6 Summary
- Covariance
- 3.6 Particles in a Box
- 3.6.1 Individual Residence Time
- 3.6.2 Aggregate Properties: Relaxation of Initial Condition
- 3.6.3 Export Rate
- 3.6.4 Long-Run Balance
- 3.6.5 Summary
- Steady State
- 3.6.6 Exit Paths
- 3.6.7 Input Paths
- 3.6.8 Autocorrelation
- 3.6.9 Example
- Branch Point
- 3.6.10 A Network of Boxes
- 3.6.10.1 Transfer Rate
- 3.6.10.2 Steady State
- 3.6.11 Closing Ideas
- Particles in Boxes
- 3.7 Closure
- 3.8 General Sources
- 4 Dispersion by Random Walk
- 4.1 Introduction: Discrete Drunken Walk
- 4.2 Continuous Processes
- 4.2.1 Resolved and Subgrid Motion
- 4.2.2 A Hierarchy
- 4.3 The AR0 Model
- Uncorrelated Random Walk and Simple Diffusion
- 4.3.1 The Displacement Process
- 4.3.2 Correspondence to Diffusion
- 4.3.3 Multi-Dimensions
- 4.3.4 Inhomogeneous Diffusion
- 4.3.5 Anisotropic Diffusion
- 4.3.6 Shear and Convergence
- 4.3.7 Metrics of Resolution
- 4.3.8 Stepsize and the Need for Autocorrelation
- 4.4 The AR1 Model
- Autocorrelated Velocity
- 4.4.1 AR1: Continuous Form and Its Discretization