GMDH-methodology and implementation in C /
Group Method of Data Handling (GMDH) is a typical inductive modeling method built on the principles of self-organization. Since its introduction, inductive modeling has been developed and applied to complex systems in areas like prediction, modeling, clusterization, system identification, as well as...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Covent Garden, London :
Imperial College Press,
[2015]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Organization of the Chapters
- Intended Audience
- Resources for Readers
- About the Editor
- List of Contributors
- 1. Introduction
- 1.1 Historical Background of GMDH
- 1.2 Basic GMDH Algorithm
- 1.2.1 External criteria
- 1.3 GMDH-Type Neural Networks
- 1.4 Classification of GMDH Algorithms
- 1.4.1 Parametric GMDH algorithms
- 1.4.1.1 Multilayer GMDH
- 1.4.1.2 Combinatorial GMDH
- 1.4.1.3 Objective system analysis
- 1.4.2 Non-parametric GMDH algorithms
- 1.4.2.1 Objective cluster analysis (OCA)
- 1.4.2.2 Analogue complexing (AC)1.4.2.3 Pointing finger clusterization algorithm
- 1.5 Rationale for GMDH in C Language
- 1.6 Available Public Software
- 1.7 Recent Developments
- 1.8 Conclusions
- References
- 2. GMDH Multilayered Iterative Algorithm (MIA)
- 2.1 Multilayered Iterative Algorithm (MIA) Networks
- 2.1.1 GMDH layers
- 2.1.2 GMDH nodes
- 2.1.3 GMDH connections
- 2.1.4 GMDH network
- 2.1.5 Regularized model selection
- 2.1.6 GMDH algorithm
- 2.2 Computer Code for GMDH-MIA
- 2.2.1 Compute a tree of quadratic polynomials
- 2.2.2 Evaluate the Ivakhnenko polynomial using the tree of polynomials generated2.2.3 Compute the coefficients in the Ivakhnenko polynomial using the same tree of polynomials generated
- 2.2.4 Main program
- 2.3 Examples
- 2.3.1 Example 1
- 2.3.2 Example 2
- 2.4 Summary
- References
- 3. GMDH Multilayered Algorithm Using Prior Information
- 3.1 Introduction
- 3.2 Criterion Correction Algorithm
- 3.3 C++ Implementation
- 3.3.1 Building sources
- 3.4 Example
- 3.5 Conclusion
- References
- 4. Combinatorial (COMBI) Algorithm
- ""4.1 The COMBI Algorithm""""4.2 Usage of the “Structure of Functions�""; ""4.3 Gradual Increase of Complexity""; ""4.4 Implementation""; ""4.5 Output Post-Processing""; ""4.6 Output Interpretation""; ""4.7 Predictive Model""; ""4.8 Summary""; ""References""; ""5. GMDH Harmonic Algorithm""; ""5.1 Introduction""; ""5.2 Polynomial Harmonic Approximation""; ""5.2.1 Polynomial, harmonic and hybrid terms""; ""5.2.2 Hybrid function approximation""; ""5.2.3 Need for hybrid modelling""; ""5.3 GMDH Harmonic""; ""5.3.1 Calculation of the non-multiple frequencies""
- 5.3.2 Isolation of significant harmonics5.3.3 Computing of the harmonics
- Appendix A. Derivation of the trigonometric equations
- A.1 System of equations for the weighting coefficients
- A.2 Algebraic equation for the frequencies
- A.3 The normal trigonometric equation
- References
- 6. GMDH-Based Modified Polynomial Neural Network Algorithm
- 6.1 Modified Polynomial Neural Network
- 6.2 Description of the Program of MPNN Calculation
- 6.2.1 The software framework (GMDH)
- 6.2.2 Object-oriented architecture of the software framework