Cargando…

Electrochemical energy storage for renewable sources and grid balancing /

"Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to st...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Moseley, Patrick T. (Editor ), Garche, Jürgen (Editor ), Adelmann, Peter (Contribuidor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine-generated contents note: pt. I Introduction
  • Renewable Energies, Markets and Storage Technology Classification
  • 1. The Exploitation of Renewable Sources of Energy for Power Generation / Anthony Price
  • 1.1. Energy and Society
  • 1.2. Energy and Electricity
  • 1.2.1. Power System History and Operation
  • 1.2.2. Electricity Generation
  • 1.2.3. Power Systems Operation
  • 1.2.4. Integration of Renewable Energy into Power Networks
  • 1.3. The Role of Energy Storage
  • 1.4. International Comparisons
  • 1.5. Types and Applications of Energy Storage
  • 1.5.1. Thermal Energy Storage
  • 1.5.2. Hydrogen Energy Storage as an Energy Vector
  • 1.5.3. Compressed Air Energy Storage
  • 1.5.4. Mechanical Systems
  • 1.5.5. Novel Electrochemical Storage
  • 1.6. Commercialization of Energy Storage
  • References
  • 2. Classification of Storage Systems / Dirk Uwe Sauer
  • 2.1. Introduction and Motivation
  • 2.2. Flexibility Options
  • 2.3. Different Types of Classifications
  • 2.3.1. Classification According to the Needs of the Grid
  • 2.3.2. Classification According to the Supply Time of the Storage System
  • 2.3.3. Classification as Single-purpose and Double-use Storage Systems
  • 2.3.4. Classification According to the Position in the Grid and the Service Offers
  • 2.4. Conclusion
  • 3. Challenges of Power Systems / Albert Moser
  • 3.1. Power System Requirements
  • 3.2. The Role of Storage Systems for Future Challenges in the Electrical Network
  • 3.2.1. Transmission System
  • 3.2.2. Distribution Network
  • 3.3. Demand-Side Management and Other Alternatives to Storage Systems
  • 3.3.1. Demand-Side Management
  • 3.3.2. Thermal Storage Systems
  • 3.4. Supply of Reserve Power
  • 3.4.1. Reserve Qualities
  • 3.4.2. Reserve Power in Germany
  • References
  • 4. Applications and Markets for Grid-Connected Storage Systems / Dirk Uwe Sauer
  • 4.1. Introduction
  • 4.2. Frequency Control
  • 4.2.1. Instantaneous Reserve/Spinning Reserve
  • 4.2.2. Primary Control Reserve
  • 4.2.3. Secondary Control Reserve
  • 4.2.4. Tertiary/Minute Control Reserve
  • 4.3. Self-supply
  • 4.3.1. Market Situation
  • 4.3.2. Market Size
  • 4.3.3. Operation Profile
  • 4.3.4. Barriers to Entry
  • 4.3.5. Competitors
  • 4.4. Uninterruptible Power Supply
  • 4.4.1. Market Situation
  • 4.4.2. Operation Profile
  • 4.4.3. Competition
  • 4.5. Arbitrage/Energy Trading
  • 4.5.1. Market Situation
  • 4.5.2. Market Size
  • 4.5.3. Operation Profile
  • 4.5.4. Barriers to Entry
  • 4.5.5. Competitors
  • 4.6. Load Levelling/Peak-Shaving
  • 4.6.1. Market Situation
  • 4.6.2. Operation Profile
  • 4.6.3. Competitors
  • 4.7. Other Markets and Applications
  • 4.7.1. Microgrids
  • 4.7.2. Island Grids/Off-grid/Weak Grids
  • 4.7.3. Transmission and Distribution Upgrade Deferral
  • 4.7.4. Stabilizing Conventional Generation/Ramp Rate Support
  • 4.7.5. Ancillary Services
  • References
  • 5. Existing Markets for Storage Systems in Off-Grid Applications / Peter Adelmann
  • 5.1. Different Sources of Renewable Energy
  • 5.2. Impact of the User
  • 5.2.1. Telecom Repeaters
  • 5.2.2. Rural Schools and Rural Hospitals
  • 5.2.3. Solar-Powered Street Lights
  • 5.2.4. Applications in the Leisure Market
  • 5.2.5. Rural Electrification: Mini-Grids
  • 5.2.6. Solar Home Systems
  • 5.2.7. Pico Solar Systems
  • 5.2.8. Market Overview of 'Off-Grid' Systems
  • 6. Review of the Need for Storage Capacity Depending on the Share of Renewable Energies / Bert Droste-Franke
  • 6.1. Introductory Remarks
  • 6.2. Selected Studies with German Focus
  • 6.3. Selected Studies with European Focus
  • 6.4. Discussion of Study Results
  • 6.4.1. Required Electric and Storage Power
  • 6.4.2. Energy Capacity Need
  • 6.4.3. Transferability of the Results to Other Regions
  • 6.5. Conclusions
  • Abbreviations
  • References
  • pt. II Storage Technologies
  • 7. Overview of Non-electrochemical Storage Technologies / Dirk Uwe Sauer
  • 7.1. Introduction
  • 7.2. 'Electrical' Storage Systems
  • 7.2.1. Superconductive Magnetic Energy Storage
  • 7.2.2. Capacitors
  • 7.3. 'Mechanical' Storage Systems
  • 7.3.1. Pumped Hydro
  • 7.3.2. Compressed Air Energy Storage (CAES)
  • 7.3.3. Flywheels
  • 7.4. 'Thermoelectric' Energy Storage
  • 7.5. Storage Technologies at the Concept Stage
  • 7.6. Summary
  • References
  • 8. Hydrogen Production from Renewable Energies-Electrolyzer Technologies / Jurgen Garche
  • 8.1. Introduction
  • 8.1.1. General Approach
  • 8.1.2. Historical Background
  • 8.2. Fundamentals of Water Electrolysis
  • 8.2.1. Thermodynamic Consideration
  • 8.2.2. Kinetic Losses Inside an Electrolysis Cell
  • 8.2.3. Efficiency of a Water Electrolyzer
  • 8.3. Alkaline Water Electrolysis
  • 8.3.1. Cell Components and Stack Design
  • 8.3.2. System Layout and Peripheral Components
  • 8.3.3. Gas Quality, Efficiency, and Lifetime
  • 8.3.4. Regenerative Loads
  • 8.4. PEM Water Electrolysis
  • 8.4.1. Cell Components and Stack Design
  • 8.4.2. System Layout and Peripheral Components
  • 8.4.3. Gas Quality, Efficiency, and Lifetime
  • 8.4.4. Regenerative Loads
  • 8.5. High-Temperature Water Electrolysis
  • 8.5.1. Cell Components and Stack Design
  • 8.5.2. System Layout and Peripheral Components
  • 8.5.3. Electrical Performance, Efficiency and Lifetime
  • 8.5.4. Regenerative Loads
  • 8.6. Manufacturers and Developers of Electrolyzers
  • 8.7. Cost Issues
  • 8.8. Summary
  • Acronyms/Abbreviations
  • References
  • 9. Large-Scale Hydrogen Energy Storage / Erik Wolf
  • 9.1. Introduction
  • 9.2. Electrolyzer
  • 9.2.1. Introduction
  • 9.2.2. PEM Electrolysis Principle
  • 9.2.3. Parameters of an Envisaged Large-Scale Electrolyzer System
  • 9.2.4. Development Roadmap for PEM Electrolyzer Systems at Siemens
  • 9.3. Hydrogen Gas Storage
  • 9.3.1. Underground Hydrogen Storage in Salt Caverns
  • 9.3.2. Utilization of Artificial, Mined Underground Salt Caverns and Their Potential
  • 9.4. Reconversion of the Hydrogen into Electricity
  • 9.4.1. Aspects Related to the Electricity Grid
  • 9.4.2. Power to Gas Solution
  • 9.5. Cost Issues: Levellized Cost of Energy
  • 9.6. Actual Status and Outlook
  • Acknowledgment
  • References
  • 10. Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries / Ludwig Jorissen
  • 10.1. Introduction
  • 10.2. Electrochemical Power Sources
  • 10.3. Hydrogen-Based Energy Storage Systems
  • 10.3.1. Hydrogen Production by Water Electrolysis
  • 10.3.2. Hydrogen Storage
  • 10.3.3. Fuel Cells
  • 10.4. Energy Flow in the Hydrogen Energy Storage System
  • 10.5. Demonstration Projects
  • 10.5.1. Freiburg Energy-Independent Solar Home
  • 10.5.2. PAFC in Combined Heat and Power Generation in Hamburg
  • 10.5.3. The Phoebus Project
  • 10.5.4. Utsira Island
  • 10.5.5. Myrthe
  • 10.5.6. Hydrogen Community Lolland
  • 10.5.7. MW-Scale PEMFC Demonstration by FirstEnergy Corporation
  • 10.5.3. MW-PEMFC System Operated by Solvay
  • 10.6. Case Study: A General Energy Storage System Layout for Maximized Use of Renewable Energies
  • 10.6.1. Short-term Energy Storage Options
  • 10.6.2. Storage Efficiency Considerations of the Hybrid System
  • 10.7. Case Study of a PV-Based System Minimizing Grid Interaction
  • 10.7.1. Energy Harvest from a Photovoltaic System
  • 10.7.2. Battery Storage
  • 10.7.3. Electrolyzer and Hydrogen Storage System
  • 10.7.4. Fuel Cell System
  • 10.7.5. Operating Strategy
  • 10.7.6. Simulation Result
  • 10.8. Conclusions
  • 10.9. Summary
  • References
  • 11. PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View / Jason Willey
  • 11.1. Introduction
  • 11.2. General Technology Description
  • 11.2.1. Background of Water Electrolysis
  • 11.2.2. Cell and System Designs
  • 11.2.3. Typical Applications
  • 11.3. Electrical Performance and Lifetime
  • 11.3.1. Efficiency
  • 11.3.2. Energy and Power Densities
  • 11.3.3. Lifetime and Ageing Processes
  • 11.3.4. Dynamic Behaviour
  • 11.4. Necessary Accessories
  • 11.4.1. Electronics
  • 11.4.2. Monitoring Systems
  • 11.4.3. Safety Devices
  • 11.4.4. Diagnostics
  • 11.5. Environmental Issues
  • 11.5.1. Materials Availability
  • 11.5.2. Life-Cycle Analysis
  • -- 11.5.3. Critical Legislative Restriction
  • 11.5.4. Energy for System Production
  • 11.6. Cost Issues
  • 11.6.1. Installation Costs
  • 11.6.2. Operation Costs
  • 11.7. Actual Status
  • 11.7.1. Overview of Industrial Activities (Existing Applications and Markets)
  • 11.7.2. R & D Activities (Major Research Institutions and Companies)
  • 11.8. Summary
  • References
  • 12. Energy Carriers Made from Hydrogen / Ferdi Schuth
  • 12.1. Introduction
  • 12.2. Hydrogen Production and Distribution
  • 12.3. Methane
  • 12.4. Methanol
  • 12.5. Dimethyl Ether
  • 12.6. Fischer-Tropsch Synfuels
  • 12.7. Higher Alcohols and Ethers
  • 12.8. Ammonia
  • 12.9. Conclusion and Outlook
  • Abbreviations
  • References
  • 13. Energy Storage with Lead-Acid Batteries / Patrick T. Moseley
  • 13.1. Fundamentals of Lead-Acid Technology
  • 13.1.1. Basic Cell Reactions
  • 13.1.2. Materials of Construction
  • 13.1.3. Cell and Battery Designs
  • 13.1.4. Typical Applications
  • 13.2. Electrical Performance and Ageing
  • 13.2.1. Efficiency
  • 13.2.2. Specific Energy/Power; Energy/Power Density
  • 13.2.3. Lifetime: Influence of Operating Conditions on Aging Processes
  • 13.2.4. Capacity
  • 13.2.5. Self-Discharge.
  • Note continued: 13.2.6. Dynamic Behavioer
  • 13.3. Battery Management
  • 13.3.1. State-of-Charge Measurement
  • 13.3.2. Charging Methods
  • 13.3.3. Safety
  • 13.4. Environmental Issues
  • 13.5. Cost Issues
  • 13.6. Past/Present Applications, Activities and Markets
  • 13.6.1. Notable Past Battery Energy Storage System Installations
  • 13.6.2. Notable Present Battery Energy Storage System Installations
  • 13.6.3. Remote Area Power Supplies Systems
  • 13.6.4. Research and Development Activities
  • 13.6.5. Contribution of Lead-Acid to Global Energy Storage
  • Acronyms and Initialisms
  • Symbols
  • Further reading
  • 14. Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage / Michael Lippert
  • 14.1. Introduction
  • 14.2. Ni-Cd and Ni-MH Technologies
  • 14.2.1. Ni-Cd and Ni-MH Basic Reactions
  • 14.2.2. Materials
  • 14.2.3. Alkaline Cell and Battery Designs
  • 14.3. Electrical Performance and Lifetime and Ageing Aspects
  • 14.3.1. General Charge-Discharge Characteristics
  • 14.3.2. Lifetime: Ageing Processes
  • 14.3.3. Storage Conditions
  • 14.3.4. Self-discharge
  • 14.4. Environmental Considerations
  • 14.4.1. Materials Availability
  • 14.4.2. Legislative Considerations
  • 14.4.3. Recycling
  • 14.5. Actual Status
  • 14.5.1. Overview of Alkaline Batteries for Energy Storage
  • 14.6. Conclusion
  • Further Reading
  • 15. High-Temperature Sodium Batteries for Energy Storage / David A.J. Rand
  • 15.1. Fundamentals of High-Temperature Sodium Battery Technology
  • 15.1.1. Sodium-Sulphur
  • 15.1.2. Sodium
  • Metal-Halide
  • 15.1.3. Beta Alumina
  • 15.1.4. Basic Cell Reactions
  • 15.1.5. Materials of Construction
  • 15.1.6. Cell and Battery Designs
  • 15.1.7. Typical Applications
  • 15.2. Electrical Performance and Ageing
  • 15.2.1. Efficiency
  • 15.2.2. Specific Energy/Power, Energy/Power Density
  • 15.2.3. Lifetime: Influence of Operating Conditions on Ageing Processes
  • 15.2.4. Self-Discharge
  • 15.3. Battery Management
  • 15.3.1. State-of-Charge Measurement
  • 15.3.2. Safety
  • 15.4. Environmental Issues
  • 15.4.1. Availability of Materials
  • 15.4.2. Life-Cycle Analysis
  • 15.4.3. Legislative Restriction
  • 15.4.4. Recycling
  • 15.4.5. Energy Required for Production
  • 15.5. Cost Issues
  • 15.5.1. Sodium-Sulphur
  • 15.5.2. Sodium-Metal-Halide
  • 15.6. Current Status
  • 15.6.1. Present Applications and Markets
  • 15.6.2. Research and Development Activities
  • 15.7. Concluding Remarks
  • Acronyms and Initialisms
  • Symbols and Units
  • References
  • Further Reading
  • 16. Lithium Battery Energy Storage: State-of-the-Art Including Lithium-Air and Lithium-Sulphur Systems / Peter Kurzweil
  • 16.1. Energy Storage in Lithium Batteries
  • 16.1.1. Basic Cell Chemistry
  • 16.1.2. Positive Electrode Materials
  • 16.1.3. Negative Electrode Materials
  • 16.1.4. Electrolytes
  • 16.1.5. Separators
  • 16.1.6. Cell and Battery Designs
  • 16.1.7. Typical Applications
  • 16.2. Electrical Performance, Lifetime, and Ageing
  • 16.2.1. Efficiency
  • 16.2.2. Power-to-Energy Ratio
  • 16.2.3. Energy and Power Densities
  • 16.2.4. Lifetime and Ageing Processes
  • 16.2.5. Capacity Depending on Temperature and Discharge Rate
  • 16.2.6. Self-Discharge Rate
  • 16.2.7. Dynamic Behaviour
  • 16.3. Accessories
  • 16.3.1. Electronics and Charging Devices
  • 16.3.2. Monitoring Systems
  • 16.3.3. Safety Devices
  • 16.3.4. Diagnosis and Monitoring Concepts
  • 16.4. Environmental Issues
  • 16.4.1. Availability of Lithium
  • 16.4.2. Life Cycle Analysis
  • 16.4.3. Legislative Restriction
  • 16.4.4. Recycling
  • 16.5. Cost Issues
  • 16.5.1. Cost Projections
  • 16.5.2. Anode Materials (Negative)
  • 16.5.3. Cathode Materials (Positive)
  • 16.5.4. Electrolyte
  • 16.6. State-of-the-Art
  • 16.6.1. Industrial Activities
  • 16.6.2. Research Activities and Challenges
  • 16.6.3. Worldwide Annual Turnover
  • Abbreviations and Symbols
  • References
  • 17. Redox Flow Batteries / Maria Skyllas-Kazacos
  • 17.1. Introduction
  • 17.2. Flow Battery Chemistries
  • 17.2.1. Zinc-Based Flow Batteries
  • 17.2.2. Redox Flow Batteries
  • 17.3. Cost Considerations
  • 17.4. Summary and Conclusions
  • References
  • Further readings
  • 18. Metal Storage/Metal Air (Zn, Fe, Al, Mg) / Hajime Arai
  • 18.1. General Technical Description of the Technology
  • 18.1.1. Basic Reactions
  • 18.1.2. Materials
  • 18.1.3. Cell and Battery Designs
  • 18.1.4. Typical Applications
  • 18.2. Electrical Performance, Lifetime, and Ageing Aspects
  • 18.2.1. Efficiency as f(T, I)
  • 18.2.2. Power-to-Energy Ratio
  • 18.2.3. Energy and Power Densities (Volume, Gravimetric)
  • 18.2.4. Lifetime: Ageing Processes, Operating Conditions Affecting Ageing (T, DoD)
  • 18.2.5. Capacity Depending on Temperature and Discharge Rate
  • 18.2.6. Self-discharge Rate (Dependence on Temperature, Starting at Full-Charged System and Starting at 50% State of Charge)
  • 18.2.7. Dynamic Behaviour
  • 18.3. Necessary Accessories
  • 18.3.1. Electronics
  • 18.3.2. Charging Devices
  • 18.3.3. Necessary Monitoring Systems
  • 18.3.4. Safety Devices
  • 18.3.5. Needs for Diagnosis and Monitoring Concepts
  • 18.4. Environmental Issues
  • 18.4.1. Materials Availability
  • 18.4.2. Life Cycle Analysis
  • 18.4.3. Critical Legislative Restriction
  • 18.4.4. Recycling Quotas
  • 18.4.5. Energy Needed for the Production
  • 18.5. Cost Issues (Today, in 5 years, and in 10 years)
  • 18.5.1. Material Costs, Costs per Power and per Energy, Investment, and Throughput Costs of Kilowatt-hour
  • 18.6. Actual Status
  • 18.6.1. Overview of Industrial Activities (Existing Applications and Markets)
  • 18.6.2. R & D Activities (Major Research Institutions and Companies)
  • 18.6.3. Worldwide Annual Turnover with the Storage Technology, Installed Capacity
  • Further Reading
  • 19. Electrochemical Double-layer Capacitors / Peter Kurzweil
  • 19.1. Technical Description
  • 19.1.1. Basic Concepts of Double-Layer-Capacitance
  • 19.1.2. Carbon Materials
  • 19.1.3. Metal Oxide Technology
  • 19.1.4. Solid-State and Polymer Technology
  • 19.1.5. Electrolyte Solution
  • 19.1.6. Separator
  • 19.1.7. Cell and Stack Designs
  • 19.1.8. Typical Applications
  • 19.2. Electrical Performance, Lifetime, and Ageing Aspects
  • 19.2.1. Specific Energy
  • 19.2.2. Power and Efficiency
  • 19.2.3. Lifetime and Ageing Processes
  • 19.2.4. Capacitance
  • 19.2.5. Self-discharge Rate
  • 19.2.6. Dynamic Behaviour
  • 19.2.7. Modelling of Double-layer Capacitors
  • 19.3. Accessories
  • 19.3.1. Diagnosis and Monitoring Concepts
  • 19.3.2. Safety Issues
  • 19.4. Environmental Issues
  • 19.4.1. Materials Availability
  • 19.4.2. Life-Cycle Analysis
  • 19.4.3. Legislative Restriction
  • 19.5. Cost Issues
  • 19.5.1. Costs Per Energy and Power
  • 19.6. Actual Status
  • 19.6.1. International Performance Data
  • 19.6.2. Practical Electrode Fabrication
  • 19.6.3. Worldwide Annual Turnover
  • Symbols and Units
  • Abbreviations and Acronyms
  • Further Reading
  • pt.
  • III System Aspects
  • 20. Battery Management and Battery Diagnostics / Angel Kirchev
  • 20.1. Introduction
  • 20.2. Battery Parameters
  • Monitoring and Control
  • 20.2.1. Battery Voltage
  • 20.2.2. Charge and Discharge Current
  • 20.2.3. Battery Capacity
  • 20.2.4. Battery Resistance and Battery Impedance
  • 20.2.5. Battery Power and Battery Energy
  • 20.2.6. Battery Temperature
  • 20.3. Battery Management of Electrochemical Energy Storage Systems
  • 20.3.1. General
  • 20.3.2. Battery Management of Aqueous Electrochemical Energy Storage Systems
  • 20.3.3. Battery Management of Non-aqueous Electrochemical Energy Storage Systems
  • 20.4. Battery Diagnostics
  • 20.4.1. Data Storage vs Energy Storage
  • 20.4.2. Non-invasive Battery Diagnostics
  • 20.4.3. Invasive Battery Diagnostics
  • 20.5. Implementation of Battery Management and Battery Diagnostics
  • 20.6. Conclusions
  • References
  • 21. Life-Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments / Dirk Uwe Sauer
  • 21.1. Motivation
  • 21.2. Methodology
  • 21.2.1. Parameters Characterizing the Storage Technology
  • 21.2.2. Parameters Characterizing the Storage Application
  • 21.2.3. Calculated Parameters
  • 21.2.4. LCC Calculation
  • 21.3. Reference Cases
  • 21.3.1. Long-term Storage
  • 21.3.2. High-Voltage Grid Load-Levelling
  • 21.3.3. Medium-Voltage Grid Peak-Shaving
  • 21.3.4. Decentralized Storage Systems in Low-Voltage Grids
  • 21.3.5. Electrical Network and Interest Rate
  • 21.4. Example Results
  • 21.4.1. Long-term Storage
  • 21.4.2. High-Voltage Grid Load-Levelling
  • 21.4.3. Medium-Voltage Grid Peak-Shaving
  • 21.4.4. Decentralized Storages in Low-Voltage Grid
  • 21.5. Sensitivity Analysis
  • 21.5.1. Dependence on Electricity Price
  • 21.5.2. Dependence on Capital Costs (Interest Rate)
  • 21.5.3. Dependence on Number of Cycles
  • 22. 'Double-Use' of Storage Systems / Dirk Uwe Sauer
  • 22.1. Introduction
  • 22.2. Uninterruptible Power Supply Systems
  • 22.3. Electric Vehicle Batteries
  • Vehicle-to-Grid
  • 22.3.1. Introduction
  • 22.3.2. Car Usage
  • 22.3.3. Vehicle Availability
  • 22.3.4. Vehicle-to-Grid Concept
  • 22.3.5. Applications Where Double-Use is not Useful or is of Only Limited Use
  • 22.4. Photovoltaic Home Storage
  • 22.4.1. Introduction
  • 22.4.2. System Designs and Benefits
  • 22.4.3. Unloading the Grid and Grid Services.
  • Note continued: 22.5. Second Life of Vehicle Batteries
  • 22.5.1. Strengths and Opportunities of 'Second-Life' Applications
  • 22.5.2. Weakness and Threats of 'Second-Life' Applications
  • 22.5.3. Summary on 'Second-Life' Opportunities
  • References.