Cargando…

Scikit-learn Cookbook : over 50 recipes to incorporate scikit-learn into every step of the data science pipeline, from feature extraction to model building and model evaluation /

If you're a data scientist already familiar with Python but not Scikit-Learn, or are familiar with other programming languages like R and want to take the plunge with the gold standard of Python machine learning libraries, then this is the book for you.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hauck, Trent (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, U.K. : Packt Publishing, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn896329131
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 141120s2014 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d E7B  |d OCLCF  |d COO  |d DEBBG  |d OCLCQ  |d YDXCP  |d N$T  |d AGLDB  |d ICA  |d NOC  |d D6H  |d OCLCQ  |d VTS  |d CEF  |d STF  |d AU@  |d VT2  |d RDF  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO 
019 |a 907297325  |a 1259146440 
020 |a 9781783989492  |q (electronic bk.) 
020 |a 1783989491  |q (electronic bk.) 
020 |z 1783989491 
020 |z 1783989483 
020 |z 9781783989485 
029 1 |a CHNEW  |b 000708148 
029 1 |a DEBBG  |b BV042490267 
029 1 |a DEBSZ  |b 434834475 
029 1 |a DEBSZ  |b 484732471 
029 1 |a GBVCP  |b 815154534 
035 |a (OCoLC)896329131  |z (OCoLC)907297325  |z (OCoLC)1259146440 
037 |a CL0500000505  |b Safari Books Online 
050 4 |a Q325.5 
072 7 |a CKB  |x 000000  |2 bisacsh 
082 0 4 |a 641.5  |2 23 
049 |a UAMI 
100 1 |a Hauck, Trent,  |e author. 
245 1 0 |a Scikit-learn Cookbook :  |b over 50 recipes to incorporate scikit-learn into every step of the data science pipeline, from feature extraction to model building and model evaluation /  |c Trent Hauck. 
264 1 |a Birmingham, U.K. :  |b Packt Publishing,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "Quick answers to common problems." 
588 0 |a Online resource; title from cover (Safari, viewed November 17, 2014). 
500 |a Includes index. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Premodel Workflow; Introduction; Getting sample data from external sources; Creating sample data for toy analysis; Scaling data to the standard normal; Creating binary features through thresholding; Working with categorical variables; Binarizing label features; Imputing missing values through various strategies; Using Pipelines for multiple preprocessing steps; Reducing dimensionality with PCA; Using factor analysis for decomposition 
505 8 |a Kernel PCA for nonlinear dimensionality reductionUsing truncated SVD to reduce dimensionality; Decomposition to classify with DictionaryLearning; Putting it all together with Pipelines; Using Gaussian processes for regression; Defining the Gaussian process object directly; Using stochastic gradient descent for regression; Chapter 2: Working with Linear Models; Introduction; Fitting a line through data; Evaluating the linear regression model; Using ridge regression to overcome linear regression's shortfalls; Optimizing the ridge regression parameter; Using sparsity to regularize models 
505 8 |a Taking a more fundamental approach to regularization with LARSUsing linear methods for classification -- logistic regression; Directly applying Bayesian ridge regression; Using boosting to learn from errors; Chapter 3: Building Models with Distance Metrics; Introduction; Using KMeans to cluster data; Optimizing the number of centroids; Assessing cluster correctness; Using MiniBatch KMeans to handle more data; Quantizing an image with KMeans clustering; Finding the closest objects in the feature space; Probabilistic clustering with Gaussian Mixture Models; Using KMeans for outlier detection 
505 8 |a Using k-NN for regressionChapter 4: Classifying Data with scikit-learn; Introduction; Doing basic classifications with Decision Trees; Tuning a Decision Tree model; Using many Decision Trees -- random forests; Tuning a random forest model; Classifying data with Support Vector Machines; Generalizing with multiclass classification; Using LDA for classification; Working with QDA -- a nonlinear LDA; Using Stochastic Gradient Descent for classification; Classifying documents with Naïve Bayes; Label propagation with semi-supervised learning; Chapter 5: Post-model Workflow; Introduction 
505 8 |a K-fold cross validationAutomatic cross validation; Cross validation with ShuffleSplit; Stratified k-fold; Poor man's grid search; Brute force grid search; Using dummy estimators to compare results; Regression model evaluation; Feature selection; Feature selection on L1 norms; Persisting models with joblib; Index 
520 |a If you're a data scientist already familiar with Python but not Scikit-Learn, or are familiar with other programming languages like R and want to take the plunge with the gold standard of Python machine learning libraries, then this is the book for you. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Machine learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Python (Langage de programmation) 
650 7 |a COOKING  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Hauck, Trent.  |t Scikit-learn cookbook : over 50 recipes to incorporate scikit-learn into every step of the data science pipeline, from feature extraction to model builing and model evaluation.  |d Birmingham, [England] : Packt Publishing, ©2014  |h iii, 199 pages  |z 9781783989485 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=886453  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10983519 
938 |a EBSCOhost  |b EBSC  |n 886453 
938 |a YBP Library Services  |b YANK  |n 12154738 
994 |a 92  |b IZTAP