Cargando…

Lecture notes on regularity theory for the Navier-Stokes equations /

The lecture notes in this book are based on the TCC (Taught Course Centre for graduates) course given by the author in Trinity Terms of 2009-2011 at the Mathematical Institute of Oxford University. It contains more or less an elementary introduction to the mathematical theory of the Navier-Stokes eq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Seregin, Gregory, 1950- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn894894804
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 141110t20142015nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d CDX  |d YDXCP  |d OCLCQ  |d N$T  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d CEF  |d REC  |d STF  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 895432231 
020 |a 9789814623414  |q (electronic bk.) 
020 |a 9814623415  |q (electronic bk.) 
020 |z 9789814623407 
020 |z 9814623407 
029 1 |a AU@  |b 000053982496 
029 1 |a AU@  |b 000058200579 
029 1 |a CHBIS  |b 010277265 
029 1 |a CHVBK  |b 332305856 
029 1 |a DEBBG  |b BV043029666 
029 1 |a DEBSZ  |b 420303413 
029 1 |a DEBSZ  |b 446484717 
029 1 |a DEBSZ  |b 454912625 
035 |a (OCoLC)894894804  |z (OCoLC)895432231 
050 4 |a QA377  |b .S463 2014eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.353  |2 23 
049 |a UAMI 
100 1 |a Seregin, Gregory,  |d 1950-  |e author. 
240 1 0 |a Lecture notes.  |k Selections 
245 1 0 |a Lecture notes on regularity theory for the Navier-Stokes equations /  |c Gregory Seregin. 
264 1 |a New Jersey :  |b World Scientific,  |c [2014] 
264 4 |c ©2015 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Contents; 1. Preliminaries; 1.1 Notation; 1.2 Newtonian Potential; 1.3 Equation div u = b; 1.4 Necas Imbedding Theorem; 1.5 Spaces of Solenoidal Vector Fields; 1.6 Linear Functionals Vanishing on Divergence Free Vector Fields; 1.7 Helmholtz-Weyl Decomposition; 1.8 Comments; 2. Linear Stationary Problem; 2.1 Existence and Uniqueness of Weak Solutions; 2.2 Coercive Estimates; 2.3 Local Regularity; 2.4 Further Local Regularity Results, n = 2, 3; 2.5 Stokes Operator in Bounded Domains; 2.6 Comments; 3. Non-Linear Stationary Problem; 3.1 Existence of Weak Solutions. 
505 8 |a 3.2 Regularity of Weak Solutions3.3 Comments; 4. Linear Non-Stationary Problem; 4.1 Derivative in Time; 4.2 Explicit Solution; 4.3 Cauchy Problem; 4.4 Pressure Field. Regularity; 4.5 Uniqueness Results; 4.6 Local Interior Regularity; 4.7 Local Boundary Regularity; 4.8 Comments; 5. Non-linear Non-Stationary Problem; 5.1 Compactness Results for Non-Stationary Problems; 5.2 Auxiliary Problem; 5.3 Weak Leray-Hopf Solutions; 5.4 Multiplicative Inequalities and Related Questions; 5.5 Uniqueness of Weak Leray-Hopf Solutions. 2D Case; 5.6 Further Properties of Weak Leray-Hopf Solutions. 
505 8 |6 880-01  |a Appendix A Backward Uniqueness and Unique ContinuationA. 1 Carleman-Type Inequalities; A.2 Unique Continuation Across Spatial Boundaries; A.3 Backward Uniqueness for Heat Operator in Half Space; A.4 Comments; Appendix B Lemarie-Riesset Local Energy Solutions; B.1 Introduction; B.2 Proof of Theorem 1.6; B.3 Regularized Problem; B.4 Passing to Limit and Proof of Proposition 1.8; B.5 Proof of Theorem 1.7; B.6 Density; B.7 Comments; Bibliography; Index. 
520 |a The lecture notes in this book are based on the TCC (Taught Course Centre for graduates) course given by the author in Trinity Terms of 2009-2011 at the Mathematical Institute of Oxford University. It contains more or less an elementary introduction to the mathematical theory of the Navier-Stokes equations as well as the modern regularity theory for them. The latter is developed by means of the classical PDE's theory in the style that is quite typical for St Petersburg's mathematical school of the Navier-Stokes equations. The global unique solvability (well-posedness) of initial boundary value. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Navier-Stokes equations. 
650 0 |a Fluid dynamics. 
650 2 |a Hydrodynamics 
650 6 |a Équations de Navier-Stokes. 
650 6 |a Dynamique des fluides. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Fluid dynamics.  |2 fast  |0 (OCoLC)fst00927973 
650 7 |a Navier-Stokes equations.  |2 fast  |0 (OCoLC)fst01035071 
776 0 8 |i Print version:  |a Seregin, Gregory, 1950-  |s Lecture notes. Selections.  |t Lecture notes on regularity theory for the Navier-Stokes equations  |z 9789814623407  |w (DLC) 2014024553  |w (OCoLC)881721527 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=886709  |z Texto completo 
880 8 |6 505-01/(S  |a 5.7 Strong Solutions5.8 Comments; 6. Local Regularity Theory for Non-Stationary Navier-Stokes Equations; 6.1 ε-Regularity Theory; 6.2 Bounded Ancient Solutions; 6.3 Mild Bounded Ancient Solutions; 6.4 Liouville Type Theorems; 6.4.1 LPS Quantities; 6.4.2 2D case; 6.4.3 Axially Symmetric Case with No Swirl; 6.4.4 Axially Symmetric Case; 6.5 Axially Symmetric Suitable Weak Solutions; 6.6 Backward Uniqueness for Navier-Stokes Equations; 6.7 Comments; 7. Behavior of L3-Norm; 7.1 Main Result; 7.2 Estimates of Scaled Solutions; 7.3 Limiting Procedure; 7.4 Comments. 
938 |a Coutts Information Services  |b COUT  |n 30119664 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1835762 
938 |a EBSCOhost  |b EBSC  |n 886709 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30119664 
938 |a YBP Library Services  |b YANK  |n 12148827 
994 |a 92  |b IZTAP