Cargando…

Approximation of set-valued functions : adaptation of classical approximation operators /

This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dyn, N. (Nira) (Autor), Farkhi, Elza (Autor), Mokhov, Alona (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, NJ : Imperial College Press, [2014]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn894894787
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 141110t20142014nju ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d N$T  |d OCLCQ  |d N$T  |d OCLCQ  |d CDX  |d OCLCQ  |d CUS  |d OCLCQ  |d E7B  |d OSU  |d DEBSZ  |d EBLCP  |d COO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d CEF  |d TKN  |d STF  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 895432259  |a 974443237  |a 974565200 
020 |a 9781783263035  |q (electronic bk.) 
020 |a 1783263032  |q (electronic bk.) 
020 |z 9781783263028  |q (hardcover ;  |q alk. paper) 
020 |z 1783263024  |q (hardcover ;  |q alk. paper) 
029 1 |a AU@  |b 000068150965 
029 1 |a DEBBG  |b BV043036015 
029 1 |a DEBSZ  |b 420303456 
029 1 |a DEBSZ  |b 429937121 
029 1 |a DEBSZ  |b 454912676 
029 1 |a AU@  |b 000074671315 
035 |a (OCoLC)894894787  |z (OCoLC)895432259  |z (OCoLC)974443237  |z (OCoLC)974565200 
050 4 |a QA221  |b .D94 2014eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.8  |2 23 
049 |a UAMI 
100 1 |a Dyn, N.  |q (Nira),  |e author. 
245 1 0 |a Approximation of set-valued functions :  |b adaptation of classical approximation operators /  |c Nira Dyn, Tel Aviv University, Israel, Elza Farkhi, Tel Aviv University, Israel, Alona Mokhov, Tel Aviv University, Israel. 
264 1 |a Hackensack, NJ :  |b Imperial College Press,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (xiii, 153 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book is aimed at the approximation of set-valued functions with compact sets in an Euclidean space as values. The interest in set-valued functions is rather new. Such functions arise in various modern areas such as control theory, dynamical systems and optimization. The authors' motivation also comes from the newer field of geometric modeling, in particular from the problem of reconstruction of 3D objects from 2D cross-sections. This is reflected in the focus of this book, which is the approximation of set-valued functions with general (not necessarily convex) sets as values, while previo. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Notations; I Scientific Background; 1. On Functions with Values in Metric Spaces; 1.1 Basic Notions; 1.2 Basic Approximation Methods; 1.3 Classical Approximation Operators; 1.3.1 Positive operators; 1.3.2 Interpolation operators; 1.3.3 Spline subdivision schemes; 1.4 Bibliographical Notes; 2. On Sets; 2.1 Sets and Operations Between Sets; 2.1.1 Definitions and notation; 2.1.2 Minkowski linear combination; 2.1.3 Metric average; 2.1.4 Metric linear combination; 2.2 Parametrizations of Sets; 2.2.1 Induced metrics and operations; 2.2.2 Convex sets by support functions. 
505 8 |a 2.2.3 Parametrization of sets in R2.2.4 Star-shaped sets by radial functions; 2.2.5 General sets by signed distance functions; 2.3 Bibliographical Notes; 3. On Set-Valued Functions (SVFs); 3.1 Definitions and Examples; 3.2 Representations of SVFs; 3.3 Regularity Based on Representations; 3.4 Bibliographical Notes; II Approximation of SVFs with Images in Rn; 4. Methods Based on Canonical Representations; 4.1 Induced Operators; 4.2 Approximation Results; 4.3 Application to SVFs with Convex Images; 4.4 Examples and Conclusions; 4.5 Bibliographical Notes. 
505 8 |a 5. Methods Based on Minkowski Convex Combinations5.1 Spline Subdivision Schemes for Convex Sets; 5.2 Non-Convexity Measures of a Compact Set; 5.3 Convexification of Sequences of Sample-Based Positive Operators; 5.4 Convexification by Spline Subdivision Schemes; 5.5 Bibliographical Notes; 6. Methods Based on the Metric Average; 6.1 Schoenberg Spline Operators; 6.2 Spline Subdivision Schemes; 6.3 Bernstein Polynomial Operators; 6.4 Bibliographical Notes; 7. Methods Based on Metric Linear Combinations; 7.1 Metric Piecewise Linear Interpolation; 7.2 Error Analysis. 
505 8 |a 7.3 Multifunctions with Convex Images7.4 Specific Metric Operators; 7.4.1 Metric Bernstein operators; 7.4.2 Metric Schoenberg operators; 7.4.3 Metric polynomial interpolation; 7.5 Bibliographical Notes; 8. Methods Based on Metric Selections; 8.1 Metric Selections; 8.2 Approximation Results; 8.3 Bibliographical Notes; III Approximation of SVFs with Images in R; 9. SVFs with Images in R; 9.1 Preliminaries on the Graphs of SVFs; 9.2 Continuity of the Boundaries of a CBV Multifunction; 9.3 Regularity Properties of the Boundaries; 10. Multi-Segmental and Topological Representations. 
505 8 |a 10.1 Multi-Segmental Representations (MSRs)10.2 Topological MSRs; 10.2.1 Existence of a topological MSR; 10.2.2 Conditions for uniqueness of a TMSR; 10.3 Representation by Topological Selections; 10.4 Regularity of SVFs Based on MSRs; 11. Methods Based on Topological Representation; 11.1 Positive Linear Operators Based on TMSRs; 11.1.1 Bernstein polynomial operators; 11.1.2 Schoenberg operators; 11.2 General Operators Based on Topological Selections; 11.3 Bibliographical Notes to Part III; Bibliography; Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Approximation theory. 
650 0 |a Linear operators. 
650 0 |a Function spaces. 
650 6 |a Théorie de l'approximation. 
650 6 |a Opérateurs linéaires. 
650 6 |a Espaces fonctionnels. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Approximation theory  |2 fast 
650 7 |a Function spaces  |2 fast 
650 7 |a Linear operators  |2 fast 
700 1 |a Farkhi, Elza,  |e author. 
700 1 |a Mokhov, Alona,  |e author. 
776 0 8 |i Print version:  |a Dyn, N. (Nira).  |t Approximation of set-valued functions  |z 9781783263028  |w (DLC) 2014023451  |w (OCoLC)849719556 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=886753  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27217353 
938 |a Coutts Information Services  |b COUT  |n 30119982 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1835769 
938 |a ebrary  |b EBRY  |n ebr10983895 
938 |a EBSCOhost  |b EBSC  |n 886753 
938 |a YBP Library Services  |b YANK  |n 12148760 
994 |a 92  |b IZTAP