Cargando…

Mastering Machine Learning with scikit-learn.

If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hackeling, Gavin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2014.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBSCO_ocn894790697
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 141108s2014 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d E7B  |d YDXCP  |d S4S  |d OCLCO  |d COO  |d OCLCO  |d OCLCQ  |d OCLCO  |d TEFOD  |d OCLCF  |d OCLCQ  |d N$T  |d OCLCQ  |d FEM  |d AGLDB  |d ICA  |d ZCU  |d XFH  |d MERUC  |d OCLCQ  |d REB  |d D6H  |d VTS  |d ICG  |d OCLCQ  |d WYU  |d STF  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 968119604  |a 969016842  |a 994057457  |a 994355080  |a 994475586  |a 1264811592 
020 |a 9781783988372  |q (electronic bk.) 
020 |a 1783988371  |q (electronic bk.) 
020 |a 1322293872 
020 |a 9781322293875 
020 |z 9781783988365 
020 |z 1783988363 
029 1 |a AU@  |b 000056030554 
029 1 |a AU@  |b 000062348399 
029 1 |a CHNEW  |b 000688106 
029 1 |a CHNEW  |b 000688107 
029 1 |a CHNEW  |b 000889231 
029 1 |a CHVBK  |b 37447950X 
029 1 |a DEBBG  |b BV043613288 
029 1 |a DEBSZ  |b 484731688 
035 |a (OCoLC)894790697  |z (OCoLC)968119604  |z (OCoLC)969016842  |z (OCoLC)994057457  |z (OCoLC)994355080  |z (OCoLC)994475586  |z (OCoLC)1264811592 
037 |a 0F780418-1D18-44A3-9536-985E55C85303  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q335 .H384 2014 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3 
049 |a UAMI 
100 1 |a Hackeling, Gavin. 
245 1 0 |a Mastering Machine Learning with scikit-learn. 
260 |a Birmingham :  |b Packt Publishing,  |c 2014. 
300 |a 1 online resource (238 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Community experience distilled 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: The Fundamentals of Machine Learning; Learning from experience; Machine learning tasks; Training data and test data; Performance measures, bias, and variance; An introduction to scikit-learn; Installing scikit-learn; Installing scikit-learn on Windows; Installing scikit-learn on Linux; Installing scikit-learn on OS X; Verifying the installation; Installing pandas and matplotlib; Summary; Chapter 2: Linear Regression; Simple linear regression. 
505 8 |a Evaluating the fitness of a model with a cost functionSolving ordinary least squares for simple linear regression; Evaluating the model; Multiple linear regression; Polynomial regression; Regularization; Applying linear regression; Exploring the data; Fitting and evaluating the model; Fitting models with gradient descent; Summary; Chapter 3: Feature Extraction and Pre-Processing; Extracting features from categorical variables; Extracting features from text; The bag-of-words representation; Stop-word filtering; Stemming and lemmatization; Extending bag-of-words with tf-idf weights. 
505 8 |a Space-efficient feature vectorizing with the hashing trickExtracting features from images; Extracting features from pixel intensities; Extracting points of interest as features; SIFT and SURF; Data standardization; Summary; Chapter 4: From Linear Regression to Logistic Regression; Binary classification with logistic regression; Spam filtering; Binary classification performance metrics; Accuracy; Precision and recall; Calculating the F1 measure; ROC AUC; Tuning models with grid search; Multi-class classification; Multi-class classification performance metrics. 
505 8 |a Multi-label classification and problem transformationMulti-label classification performance metrics; Summary; Chapter 5: Non-linear Classification and Regression with Decision Trees; Decision trees; Training decision trees; Selecting the questions; Information gain; Gini impurity; Decision trees with scikit-learn; Tree ensembles; The advantages and disadvantages of decision trees; Summary; Chapter 6: Clustering with K-Means; Clustering with the K-Means algorithm; Local optima; The elbow method; Evaluating clusters; Image quantization; Clustering to learn features; Summary. 
505 8 |a Chapter 7: Dimensionality Reduction with PCAAn overview of PCA; Performing Principal Component Analysis; Variance, Covariance, and Covariance Matrices; Eigenvectors and eigenvalues; Dimensionality reduction with Principal Component Analysis; Using PCA to visualize high-dimensional data; Face recognition with PCA; Summary; Chapter 8: The Perceptron; Activation functions; The perceptron learning algorithm; Binary classification with the perceptron; Document classification with the perceptron; Limitations of the perceptron; Summary; Chapter 9: From the Perceptron to Support Vector Machines. 
500 |a Kernels and the kernel trick. 
520 |a If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Open source software. 
650 6 |a Python (Langage de programmation) 
650 6 |a Logiciels libres. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Open source software.  |2 fast  |0 (OCoLC)fst01046097 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Hackeling, Gavin.  |t Mastering Machine Learning with scikit-learn.  |d Birmingham : Packt Publishing, ©2014  |z 9781783988365 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=881079  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27192577 
938 |a ebrary  |b EBRY  |n ebr10962331 
938 |a EBSCOhost  |b EBSC  |n 881079 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis30119681 
938 |a YBP Library Services  |b YANK  |n 12148100 
994 |a 92  |b IZTAP