Cargando…

Inverse problems : Tikhonov theory and algorithms /

Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are dis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ito, Kazufumi (Autor), Jin, Bangti (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, 2014.
Colección:Series on applied mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn893487334
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 141019s2014 nju ob 001 0 eng d
040 |a CN3GA  |b eng  |e pn  |c CN3GA  |d OCLCO  |d N$T  |d CDX  |d OCLCF  |d EBLCP  |d YDXCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d M8D  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 893332637 
020 |a 9814596205  |q (electronic bk.) 
020 |a 9789814596206  |q (electronic bk.) 
020 |z 9789814596190  |q (hardcover ;  |q alk. paper) 
020 |z 9814596191  |q (hardcover ;  |q alk. paper) 
029 1 |a AU@  |b 000058200614 
029 1 |a DEBBG  |b BV043029117 
029 1 |a DEBSZ  |b 416434851 
029 1 |a DEBSZ  |b 446468290 
029 1 |a DEBSZ  |b 455000549 
029 1 |a NZ1  |b 15910881 
035 |a (OCoLC)893487334  |z (OCoLC)893332637 
050 4 |a QA371  |b .I88 2014 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.357  |2 23 
049 |a UAMI 
100 1 |a Ito, Kazufumi,  |e author. 
245 1 0 |a Inverse problems :  |b Tikhonov theory and algorithms /  |c by Kazufumi Ito (North Carolina State University, USA) & Bangti Jin (University of California, Riverside, USA). 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on Applied Mathematics ;  |v v. 22 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; 1. Introduction; 2. Models in Inverse Problems; 2.1 Introduction; 2.2 Elliptic inverse problems; 2.2.1 Cauchy problem; 2.2.2 Inverse source problem; 2.2.3 Inverse scattering problem; 2.2.4 Inverse spectral problem; 2.3 Tomography; 2.3.1 Computerized tomography; 2.3.2 Emission tomography; 2.3.3 Electrical impedance tomography; 2.3.4 Optical tomography; 2.3.5 Photoacoustic tomography; 3. Tikhonov Theory for Linear Problems; 3.1 Well-posedness; 3.2 Value function calculus; 3.3 Basic estimates; 3.3.1 Classical source condition; 3.3.2 Higher-order source condition. 
505 8 |a 3.4 A posteriori parameter choice rules3.4.1 Discrepancy principle; 3.4.2 Hanke-Raus rule; 3.4.3 Quasi-optimality criterion; 3.5 Augmented Tikhonov regularization; 3.5.1 Augmented Tikhonov regularization; 3.5.2 Variational characterization; 3.5.3 Fixed point algorithm; 3.6 Multi-parameter Tikhonov regularization; 3.6.1 Balancing principle; 3.6.2 Error estimates; 3.6.3 Numerical algorithms; Bibliographical notes; 4. Tikhonov Theory for Nonlinear Inverse Problems; 4.1 Well-posedness; 4.2 Classical convergence rate analysis; 4.2.1 A priori parameter choice; 4.2.2 A posteriori parameter choice. 
505 8 |a 4.2.3 Structural properties4.3 A new convergence rate analysis; 4.3.1 Necessary optimality condition; 4.3.2 Source and nonlinearity conditions; 4.3.3 Convergence rate analysis; 4.4 A class of parameter identification problems; 4.4.1 A general class of nonlinear inverse problems; 4.4.2 Bilinear problems; 4.4.3 Three elliptic examples; 4.5 Convergence rate analysis in Banach spaces; 4.5.1 Extensions of the classical approach; 4.5.2 Variational inequalities; 4.6 Conditional stability; Bibliographical notes; 5. Nonsmooth Optimization; 5.1 Existence and necessary optimality condition. 
505 8 |a 5.1.1 Existence of minimizers5.1.2 Necessary optimality; 5.2 Nonsmooth optimization algorithms; 5.2.1 Augmented Lagrangian method; 5.2.2 Lagrange multiplier theory; 5.2.3 Exact penalty method; 5.2.4 Gauss-Newton method; 5.2.5 Semismooth Newton Method; 5.3 p sparsity optimization; 5.3.1 0 optimization; 5.3.2 p (0 <p <1)-optimization; 5.3.3 Primal-dual active set method; 5.4 Nonsmooth nonconvex optimization; 5.4.1 Biconjugate function and relaxation; 5.4.2 Semismooth Newton method; 5.4.3 Constrained optimization; 6. Direct Inversion Methods; 6.1 Inverse scattering methods. 
505 8 |a 6.1.1 The MUSIC algorithm6.1.2 Linear sampling method; 6.1.3 Direct sampling method; 6.2 Point source identification; 6.3 Numerical unique continuation; 6.4 Gel'fand-Levitan-Marchenko transformation; 6.4.1 Gel'fand-Levitan-Marchenko transformation; 6.4.2 Application to inverse Sturm-Liouville problem; Bibliographical notes; 7. Bayesian Inference; 7.1 Fundamentals of Bayesian inference; 7.2 Model selection; 7.3 Markov chain Monte Carlo; 7.3.1 Monte Carlo simulation; 7.3.2 MCMC algorithms; 7.3.3 Convergence analysis; 7.3.4 Accelerating MCMC algorithms; 7.4 Approximate inference. 
520 |a Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference. The book offers a com. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Inverse problems (Differential equations)  |x Numerical solutions. 
650 6 |a Problèmes inverses (Équations différentielles)  |x Solutions numériques. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Inverse problems (Differential equations)  |x Numerical solutions  |2 fast 
700 1 |a Jin, Bangti,  |e author. 
776 0 8 |i Print version:  |z 9789814596190  |z 9814596191  |w (DLC) 2014013310 
830 0 |a Series on applied mathematics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=862357  |z Texto completo 
936 |a BATCHLOAD 
938 |a Coutts Information Services  |b COUT  |n 30005479 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1812622 
938 |a EBSCOhost  |b EBSC  |n 862357 
938 |a YBP Library Services  |b YANK  |n 12102382 
994 |a 92  |b IZTAP